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Sec.1. FIRST-PRINCIPLES CALCULATIONS

All calculations are done using Density Functional Theory (DFT), Density Functional

Perturbation Theory (DFPT) or ab initio molecular dynamics (AIMD) as implemented in

the VASP package [1]. The first-principles settings for two ceramics are summarized in the

table below:

Materials XC functional Optimization k-grid Convergence criterion / (eV/Å)

CeO2 LDA+U, Ueff = 10 eV [2, 3] MK 12× 12× 12 10−6

MgO PBE [4] Γ-centered 11× 11× 11 10−7

Energy cutoffs for both materials are 520 eV. Born effective charges are computed by

DFPT and with the aid of Phonopy [5] we get (1) for CeO2: ϵ∞ = 5.927 (experiment gives

5.31 [6]), Z∗
Ce,xx = 5.502 and Z∗

O,xx = −2.751; (2) for MgO: ϵ∞ = 3.241 (experiment gives

2.96 [7]), Z∗
Mg,xx = 1.980 and Z∗

O,xx = −1.980.

Ab initio molecular dynamics are performed on a supercell structure consisting of 192

atoms constructed by 4×4×4 CeO2 primitive cells or 128 atoms of 4×4×4 MgO primitive

cells. Only the Γ point is computed to accelerate the calculation. After reaching thermal

equilibrium under NPT ensemble (zero external pressure) with Langevin thermostat, we use

1000 more steps to get averaged lattice structure at each temperature. Then, on relaxed

structure we perform NVT ensemble simulations and after reaching equilibrium we use 2000

more steps to construct effective force constants [8] at a time step of 2 fs. In the evaluation

of force constants, cutoff radii are summarized in the table below:

Materials Φ∗
2 cutoff / Å Φ∗

3 cutoff / Å Φ∗
4 cutoff / Å

CeO2 6.31 Å 6 Å 4 Å

MgO 4.81 Å 4.5 Å 3.2 Å

Sec.2. QUANTUM CORRECTION TO MD TEMPERATURE

Our AIMD simulations suffer from incorrect statistics inherently seen in MD temperature.

This would cause the thermal expansion to be always linear for materials with high Debye

temperatures like MgO in our case. To partially overcome the limits of MD and connect
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classical MD temperature TMD with quantum temperature T , we have followed the treatment

in [9] to correlate these two temperatures:

TMD =
2T 3

TD
2

∫ TD/T

0

x2

ex − 1
dx, (S.1)

where TD is the Debye temperature of a material.

Sec.3. NORMAL AND UMKLAPP FOUR-PHONON SCATTERING STRENGTH

We use RTA treatment of 4ph scattering when calculating κ. The effect of fully iterative

solution with both 3ph and 4ph can be partially inferred from the relative importance of

normal and Umklapp scattering in a certain material. The following figure (Fig. S1) shows

the relative importance of N/U processes in the materials we simulated. Past theoretical

investigations [10, 11] established an understanding that normal processes need to be dom-

inant to have strong impact on thermal conductivity. It was shown that considering fully

iterative solution in the case where N/U processes are just comparable gives underprediction

of thermal conductivity by 3.5% - 7.5%. Based on this, we expect that RTA for 4ph channel

would lead to computational error of κ than 10%.
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FIG. S1. Room temperature 4ph scattering rates in two materials decomposed into normal and

Umklapp processes. Blue filled circles represent Umklapp processes and orange hallow circles

represent normal processes.
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Sec.4. VALIDITY OF PHONON GAS MODEL IN OUR SIMULATIONS

Our theory is based on phonon gas model. The phonon gas model is not applicable

to cases where phonons cannot be well-defined in some crystals or at extreme conditions.

Past theoretical works have attempted to resolve this challenge by using the concept of

diffusons [12] or a dual-channel transport model [13]. Our approach is different in the

sense that phonon renormalization scheme defines renormalized energies and scattering rates

at high temperatures, preserving the concept of phonons. In our simulations of ceramic

materials (MgO for instances), the majority of renormalized phonons do have mean free

paths (MFPs) longer than interatomic distance (approximately 0.2 nm for MgO) even at

1500 K as shown in Fig. S2. Very few phonon modes (marked in red) have MFPs shorter than

the interatomic distance and may be ill-defined. Since these modes have strong scattering

rates, we expect them not to contribute much to thermal conductivity.
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FIG. S2. Phonon mean free path of MgO at 1500 K as a function of phonon frequency. Red dots

represent phonons whose mean free paths are shorter than 0.2 nm (red dashed line), the average

interatomic distance of MgO crystal.
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Sec.5. LOGARITHM PLOT OF TEMPERATURE-DEPENDENT THERMAL CON-

DUCTIVITY

Double-logarithm plot can better show power laws compared to normal plot in the main

text. The following figure includes the same data from Fig. 6 of the main text but plotted

in logarithm axes. It is clearly seen that power laws of κ incorporating 4ph scattering are

affected by phonon renormalization for both materials.

FIG. S3. Logarithm plot of Fig. 6 of the main text.

Sec.6. TDTR SENSITIVITY OF MGO AND CEO2 ON STO SAMPLES

The sensitivity of the TDTR signal to a parameter α using magnitude and ratio analysis

is calculated using the expressions:

Sα =
d ln

√
V 2
in + V 2

out

d lnα
, (S.2)

Sα =
d ln Vin

Vout

d lnα
. (S.3)

Sensitivities to selected parameters for MgO substrate and CeO2 film on STO substrate

are plotted in Fig. S4. The sensitivity value at zero indicates the signal is independent of

the parameter. On the other hand, the signal strongly depends on parameters with large

sensitivity values. For both samples, the thermal conductivity of the material of interest has
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high sensitivity. Therefore, the fitted thermal conductivities of MgO and CeO2 have small

uncertainties.
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FIG. S4. The sensitivity of TDTR signal to selected parameters in MgO substrate and CeO2 film

on STO substrate samples using (a,b)magnitude and (c,d)ratio fitting methods. A larger absolute

value of the sensitivity corresponds to higher sensitivity to a parameter. Parameter GX−Y is the

interface thermal conductance between material X and Y. Parameter dX is the thickness of the

material X.

Sec.7. TDTR MEASUREMENTS OF CEO2 SUBSTRATE

Due to its low purity level, the purchased CeO2 substrate shows low thermal conductivity

as measured by TDTR method (Fig. S5). The measured temperature dependent thermal

conductivity is similar to that of a CeO2 pellet with 98% purity and 95% theoretical den-
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sity [14, 15].
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FIG. S5. The measured temperature-dependent thermal conductivity of a commercially available

CeO2 substrate. Low thermal conductivity is likely caused by low purity, which is estimated at

98% by comparing with data from literature [14].

Sec.8. GRAIN SIZE ESTIMATION BASED ON XRD

To characterize the crystallinity of the CeO2 substrate, XRD (Panalytical X’Pert X-ray

Diffractometer with Cu Kα1 (λ=0.154 nm) radiation source) was conducted. The crystallite

size of the PLD-grown CeO2 film is estimated using the Scherrer Equation:

d =
kλ

βcosθ
, (S.4)

where d is the average crystallite size, k is a constant with variable magnitude depending

on geometry of the crystallite, λ is the wavelength of the X-ray, β is the full-width half-

maxima of the XRD signal peak, and θ is the diffraction angle of the where the peak exists.

Figure. S6 shows the XRD result of CeO2 film on STO substrate. The estimated crystallite

size is between 40 nm to 65 nm, based on which the boundary scattering is calculated. The
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resolution of the XRD setup is 0.01 degree, resulting in an uncertainty in the calculated

average grain size of 0.01 nm which is much less significant than the uncertainty due to

peaks at different diffraction angles.
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FIG. S6. The XRD result of PLD-grown CeO2 film on STO substrate.

Sec.9. SAMPLE PREPARATIONS AND CHARACTERIZATIONS

The CeO2 thin film was grown on STO (001) substrate, using a pulsed laser deposition

(PLD) technique with a KrF excimer laser (Lambda Physik, λ = 248 nm, 10 Hz). Before

deposition, the chamber was pumped to vacuum (< 1 × 10−6 Torr), and substrate tem-

perature was kept at 600 ◦C. A 20 mTorr oxygen pressure was used during deposition and

the chamber was naturally cooled down to room temperature at 20 mTorr oxygen partial

pressure after deposition. The Energy Dispersive Spectroscopy (EDS) mapping of the PLD

grown CeO2 film shows the atomic fraction of Ce and O are 28.47±4.66% and 71.53±8.29%,

respectively. Based on the Ce and O composition in the EDX data, it suggests the CeO2

thin film is close to stoichiometry. The higher oxygen content than expected (33% Ce, 66%
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O) in the EDX data is due to the surface oxygen contamination on the TEM specimen foil.
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