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Figure S1: Spatial decays of (a) the Hamiltonian, (b) the dynamical matrix, and (c) the
electron-phonon matrix elements for Al at 0 GPa (black black symbols) and 207 GPa (blue
symbols).
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Figure S2: (a) The relative change of volume as a function of pressure for Al. The positive
curvature suggests stiffening of the lattice. (b) Maximum phonon frequency vs pressure for
Al.
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Figure S3: Bandstructure calculations for Al at three different pressures.
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Figure S4: Phonon dispersions for Al at three different pressures.
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Figure S5: Lattice thermal conductivity accumulation as a function of phonon mean free
paths for Al at three different pressures.

We will briefly describe the calculations of basic physical quantities that are used to

ultimately calculate the lattice and electron thermal conductivity. Our calculations of the

electron-phonon coupling coefficients requires the calculations of the imaginary part of the

electron and phonon self-energies given as,S1,S2

Σnk(ω, T ) =
∑
mν

∫
BZ

dq

ΩBZ

|gmn,ν(k,q)|2

×
[

Nq,ν(T ) + fmk+q

ω − (εmk+q − εF) + ωq,ν + iδ
+

Nq,ν(T ) + 1− fmk+q(T )

ω − (εmk+q − εF)− ωq,ν + iδ

]
, (1)

Πqν(ω, T ) = 2
∑
mn

∫
BZ

dk

ΩBZ

|gmn,ν(k,q)|2 ×
fnk(T )− fmk+q(T )

εmk+q − εnk − ω − iδ
, (2)

where εF is the Fermi energy, Nq,ν is the Bose-Einstein distribution, fnk(T ) is the Fermi-Dirac

distribution at band n, gmn,ν(k,q) is the electron-phonon matrix element computed using

density functional perturbation theory over all phonon and electron wave-vectors, q, and
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k, respectively, and quantifies the scattering process between the Khon-Sham states mk′

and nk, δ is a small positive real parameter to avoid numerical instabilities guaranteeing

the correct analytical structure of the self-energies, and the integrals are extended over the

Brillouin Zone (BZ) of volume ΩBZ, and the factor of 2 in the electron self-energy accounts

for spin degeneracy.S1,S2 Note, the commonly used approximation known as the ”double-

delta function” approximation that neglects the phonon frequencies ωqν and takes the limit

of small broadening δ is not required in the electron-phonon Wannier (EPW) package used

for the calculations of the self-energies.S1,S3

We calculate the Eliashberg transport spectral function, α2
trF (ω), which measures the

probability of specific phonon modes with energy h̄ω to decay into an electron-hole pair

from an electron eigenstate in the Fermi surface to another. The average of the electron-

phonon coupling over all phonon wave-vectors, q with branch index ν, throughout the entire

Brillouin Zone is given as,S4

α2
trF (ω) =

1

N(εF)

∑
qν

∑
knm

|gqνk+qm,kn|
2δ(h̄ω − h̄ωqν)δ(εkn − εF)δ(εk+qm − εF)ηk+qm,kn, (3)

where gqνk+qm,kn is the electron-phonon matrix elements that quantifies the scattering of an

electron eigenstate |kn⟩ at Fermi surface to the state |k+ qm⟩, and N(εF) is the density of

states of electrons per spin at the Fermi level. The efficiency factor

ηk+qm,kn = 1− vkn · vk+qm

|vkn|2
, (4)

which depends on the electron velocity vkn and accounts for the anisotropy by considering

different scattering directions, is the difference between the transport spectral function and

the spectral function, α2F (ω).S2,S5 We calculate the electron-phonon mass enhancement

parameter (λ) and the transport constant (λtr) given as,
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λ(tr) = 2

∫ ∞

0

α2
(tr)F (ω)dω

ω
. (5)

We calculate the electron-phonon coupling matrix within the framework of the EPW

package.S2 From an initial coarse grid of 18×18×18 and 6×6×6 electron (k) and phonon wave

vector grids (q), respectively, we use the recently formulated maximally localized Wannier

functions basis,S6 to interpolate to uniform (and denser) grids of 50×50×50 and 30×30×30,

for k and q, respectively, to conduct integration via the tetrahedron method. Note, for all

of our calculations, we use a plane wave energy cutoff of 816.3 eV (60 Ry) and a gaussian

smearing of 0.34 eV (0.025 Ry).

We ensure that the interpolated wavevector grids are dense enough to produce numeri-

cally converged values of λ as detailed in our earlier works in Refs. S5,S7. We also check the

accuracy of the Wannier representation by confirming their localized nature by considering

the spatial decay of the Hamiltonian, dynamical matrix, and the e-p coupling matrix ele-

ments, which have to decrease to zero to confirm the localization of the Wannier functions

and validate their use for high-quality interpolation.S8 We plot the spatial decays of the

Hamiltonian, the dynamical matrix and the electron-phonon coupling matrix elements in

the Wannier functions representation for Al at 0 GPa and 206 GPa in Fig. S1. The electron

Hamiltonian is obtained as,

Hel
Re,R

′
e
=

∑
k

wke
−ik·(R′

e−Re)U †
kH

el
k Uk, (6)

where wk is the weight of the k points, Re is the electron unit-cell and the guage matrix

Uk yields the transformation between Bloch eigenstates and maximally localized Wannier

functions (MLWFs).S8,S9

The transformation of the dynamical matrix to real-space representation is carried out

using,

Dph
Rp,R

′
p
=

∑
q

wqe
−iq·(R′

p−Rp)eqD
ph
q e†q (7)
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where wq is the weight of the q points, eq are the orthonormal eigenvectors of the dynamical

matrix. Consequently, the e-p matrix elements are given as,

g(Re,Rp) =
1

Np

∑
q,k

wqe
−i(k·Re+q·Rp)U †

k+qg(k,q)Uku
−1
q , (8)

Here, Uk and Uk+q are the electronic matrices, uq are the phonon eigenvectors scaled by the

atomic masses, and Np is the number of unit cells in the period supercell.S8,S9 As is clear from

Fig. S1, all quantities decay to zero for the two extreme pressure conditions very quickly with

distance in the electron or phonon unit cells. This suggests that high quality interpolation

has been achieved via the wanniarization technique. Note, the phonon frequencies and

band energies at ambient condition obtained via the interpolation also agree with those

calculated directly by the density functional theory calculations and previous works,S10,S11

which provides confidence in our approach for calculating electron-phonon interactions at

high pressures. We calculate the electron thermal conductivity by utilizing the electron-

phonon scattering rates calculated from the above mentioned methodology in conjunction

with the BTE.

The application of pressure has a positive curvature on the relative volume change, which

suggests that the lattice is hardening with pressure. We also find that the spectrum of

vibrations also broadens to higher frequencies with pressure (Fig. S2). The application

of pressure is also shown to broaden the both the electronic band structure and phonon

dispersion as shown in Fig. S3 and Fig. S4, respectively, along high symmetry directions in

the Brillouin zone.

The BTE is solved to calculate the phonon thermal conductivity tensor that is given

byS12

κp,αβ =
∑
qv

cqvvqv,αvqv,βτqv (9)

here, cqv denote the volumetric specific heat capacity, vqv,α gives the α component of the
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group velocity vector vqv of the phonons and τqv represents the lifetime of the phonon.The

computation carried out in Eq. 9. is in the first Brillioun zone for all the phonon modes.

The volumetric specific heat capacity for phonons is given by Bose-Einstein statistics as

cqv =
h̄ωqv

V

δn0
qv

δV
, where n0

qv is the Bose-Einstein distribution. The group velocity and the mode

frequency are related as vqv=
δωqv

δq
. The commonly used method for calculating the phonon

lifetime is by employing the inverse of the phonon scattering rate, under the relaxation time

approximation of the BTE and is given by, nqv

δt
.S13

The phonon frequencies are obtained by employing the Harmonic lattice dynamics cal-

culations.S14 The elements of the dynamical matrix elements are

Dαα
′

ττ ′
(q) =

∑
R′

1
√
mτmτ ′

Φαα
′

0τ ,R′τ ′
exp(iq.R

′
). (10)

The summation shown in Eq. 10 is carried out over all the unit cells located at position

vector R
′
, mτ denotes the mass of the atom τ in the unit cell, Φαα

′

0τ ,R′τ ′
is for the second-order

(harmonic) force constant which links the motion of atom (0,τ) (atom τ in the unit cell at 0)

in the α direction and atom (R
′
, τ

′
) in the α′ direction. The eigenvalue problems are solved

to obtain the eigenvectors, eqv, and the phonon frequencies. The eigenvalue problem is given

by,

(ωqv)
2eqv = D(q)eqv (11)

For these calculations, we consider phonon-phonon and phonon-electron interactions in-

teractionsS15

1

τ ppqv
=

πh̄

16N

∑
q′v′

∑
q′′v′′

∣∣∣V qq′q′′

vv′v′′

∣∣∣2 [(n0
q′v′

+ n0
q′′v′′

+ 1)δ(ωqv − ωq′v′ − ωq′′v′′) + (n0
q′v′

− n0
q′′v′′

)

× [δ(ωqv + ωq′v′ − ωq′′v′′ )− δ(ωqv − ωq′v′ + ωq′′v′′ )
]

(12)
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here, N denotes the total number of phonon modes, V qq′q′′

vv′v′′ represents the matrix elements

for three phonon scattering. The three phonon scattering depend on the third order force

constants Φαα
′
alpha

′′

0τ ,R′τ ′,R′′τ ′′
and can be defined as,

V qq′q′′

vv′v′′ =
∑

R′′τ ′′α′′

∑
R′τ ′α′

∑
τα

δq+q′+q′′Φ
αα

′
α
′′

0τ ,R′τ ′,R′′τ ′′
×

ei(q
′ ·R′

+q
′′ ·R′′)eταqv e

τ
′
α
′

q′v′
eτ

′′
α
′′

q′′v′′

√
mτmτ ′mτ ′′ωqvωq′v′ωq′′v′′

(13)

here eταqv denote the α-component of the eigenvector eqv for atom τ . For phonon mode qv,

the scattering is,?

1

τ epqv
=

2π

h̄

∑
κmn

ωkappa

∣∣∣gvmn(κκ
′
, q
∣∣∣2 (fκm − fκ′n)× δ(ϵκm + h̄ωqv − ϵκ′n) (14)

here, ωκ represents the weight of the κ point which is normalized to two for non-magnetic

calculations and κ
′
= κ + q. The effective lifetime of the phonon mode qv is obtained by

combining the phonon-phonon and phonon-electron relaxation time using the Matthiessen’s

rule in which the lifetime is given as,

1

τqv
=

1

τ ppqv
+

1

τ epqv
. (15)
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