Mid-wave to near-IR optoelectronic properties and epsilon-near-zero behavior in indium-doped cadmium oxide

Angela Cleri, John Tomko, Kathleen Quiambo-Tomko, Mario V. Imperatore, Yanglin Zhu, J. Ryan Nolen, Joshua Nordlander, Joshua D. Caldwell, Zhiqiang Mao, Noel C. Giebink, Kyle P. Kelley, Evan L. Runnerstrom, Patrick E. Hopkins, and Jon-Paul Maria

1 Penn State University, Department of Materials Science and Engineering, University Park, Pennsylvania 16802, USA
2 University of Virginia, Department of Materials Science and Engineering, Charlottesville, Virginia 22904, USA
3 Penn State University, Department of Electrical Engineering, University Park, Pennsylvania 16802, USA
4 Penn State University, Department of Physics, University Park, Pennsylvania 16802, USA
5 Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, Tennessee 37235, USA
6 Oak Ridge National Laboratory, Center for Nanophase Materials Science, Oak Ridge, Tennessee 37830, USA
7 Army Research Office, DEVCOM US Army Research Laboratory, Research Triangle Park, North Carolina 27709, USA
8 University of Virginia, Department of Mechanical and Aerospace Engineering, Charlottesville, Virginia 22904, USA
9 University of Virginia, Department of Physics, Charlottesville, Virginia 22904, USA

DOI: 10.1103/PhysRevMaterials.5.035202

I. INTRODUCTION

Plasmonic oscillations stand at the forefront of photonics research giving the ability to support strong light-matter interactions at sub-diffractional length scales. Recently, accessing the infrared (IR) spectral range through plasmonic resonances has stimulated interest due to phenomena including evanescent coupling, chemical sensing, hot-carrier injection, tunable absorption, high-harmonic generation, and optical characterization [1–7].

Traditional plasmonic materials such as gold (Au) and silver (Ag) support plasmonic modes in the visible range as carrier densities are generally fixed in the 10^{22}–10^{23} cm$^{-3}$ range [8]. With sophisticated nanofabrication, metals can be made to host IR plasmons, like spoof plasmons in Au or Ag grid structures [9,10]. However, these materials tend to exhibit significant optical losses in the mid-wave to near-IR due to their low mobility values [11], while the confinement of the plasmonic fields are limited due to the extremely large negative permittivities of these materials in this spectral range. While many semiconductors offer plasma frequencies in either the mid- or near-IR, currently there is not a single material that can bridge these frequency ranges, allowing for accessibility across the mid-wave to near-IR [12–14].

Transparent conducting oxides (TCOs) are attractive materials for accessing IR plasmon resonance modes [8,12]. In several material systems, the carrier concentration can be tuned across ranges spanning 10^{17}–10^{22} cm$^{-3}$ to allow plasmonic light-matter interactions in multiple segments of the IR window [8,12,13,15–17]. Aluminum-doped zinc oxide has been shown to support surface plasmon polaritons (SPPs) in the near-IR (about 1–3 μm wavelength range) [18]. Indium tin oxide thin film epsilon-near-zero (ENZ) frequency can be tuned through the near-IR (between wavelengths of roughly 1–5 μm), and pushed further to the mid-IR (5–10 μm) by fabricating nanostructures or periodic arrays [15]. However, these materials’ mobilities tends to be relatively low (typically below 200 cm2/V·s), especially at lower carrier density (corresponding to longer wavelengths), resulting in relatively high optical losses [12,13,15].

Cadmium oxide (CdO) is one of the most promising TCO candidates for low-loss mid-IR plasmonics to date resulting from its high mobilities, allowing for enhanced light-matter interactions and light confinement [6,19,20]. This was demonstrated in 2015 by Sachet et al., where tunable
carrier concentrations from 10^{19} to 10^{21} cm$^{-3}$ were demonstrated in dysprosium-doped CdO (Dy: CdO) grown by molecular beam epitaxy (MBE) with peak mobilities of 500 cm2/V s [6]. More recently, Runnerstrom et al. and Kelley et al. showed that MBE-quality doped CdO films could be prepared using reactive high-power impulse magnetron sputtering (HiPIMS) [19,20]. These films have been shown to support dispersive SPP modes as well as extremely sub-wavelength light confinement in ENZ modes [19]. ENZ modes occur in films with extreme subwavelength thicknesses ($<\lambda/50$), on the order of the skin depth, and at frequencies close to the plasma frequency, at which the dielectric constant of the film crosses through zero [21]. Various donor dopants can be employed to control the carrier concentration and tailor the plasmonic resonance at wavelengths across the mid-IR. HiPIMS-grown yttrium-doped CdO (Y: CdO) yields carrier densities up to 3×10^{20} cm$^{-3}$, but mobility values fall at densities above 2.5×10^{20} cm$^{-3}$ [20]. Fluorine-doped CdO (F: CdO) achieves carrier concentrations only up to 1.6×10^{20} cm$^{-3}$, though high mobilities (300–500 cm2/V s) are maintained across the range [19].

In F- and Y-doped CdO, one can achieve tunable SPP and ENZ modes at wavelengths as short as 2.8 and 2.4 μm, respectively [19,20]. Pushing further into the near-IR is desirable to expand the range of wavelengths accessible by this single material. The near-IR is an especially relevant range for telecommunications, spectroscopy for biomedical and pharmaceutical applications, and atmospheric sensing [22–24]. However, accessing this range requires identifying a dopant that supports high carrier densities while maintaining high mobility values.

Indium is a promising dopant for accessing the near-IR in CdO thin films. Several reports in the literature demonstrate In: CdO thin films with carrier concentrations reaching the low-to-mid 10^{20} cm$^{-3}$ range [25,26] and even extending to the low 10^{21} cm$^{-3}$ range [27]. These carrier ranges may enable plasmon resonances in the near-IR. However, these high carrier densities are accompanied by relatively low mobilities (below 100 cm2/V s), which would inhibit the plasmon quality factors.

Recently, using HiPIMS-grown In: CdO, films with high carrier densities and high mobilities (>300 cm2/V s) have been used to support a number of interesting nanophotonics phenomena including femtosecond optical polarization switching, hybridization of SPP modes with deeply subwavelength ENZ modes, and structures supporting multiple ENZ layers [28–30]. In all cases, polaritonic oscillations approached the near-IR spectrum. In this paper we report a comprehensive study of In: CdO, demonstrating ENZ modal frequencies spanning the mid-wave IR and pushing into the near-IR and extending up to about 1.9-μm wavelength. This is achieved by reaching higher carrier densities than have been reported for other dopants in HiPIMS-deposited CdO, while maintaining the high carrier mobilities general to this material across the whole range. Further, a 0.58-eV shift of the optical bandgap was observed with increasing carrier density across the doping range studied, and carrier density dependent thermal transport and residual resistivity ratio. These results, in concert with our recent report on the dielectric function of In: CdO [31], offer the necessary bedrock on which future designs of IR plasmonic devices using In: CdO can be based.

II. EXPERIMENTAL PROCEDURE

In: CdO is grown on r-plane (012) Al$_2$O$_3$ single crystal substrates (Jiaozuo TranTrit Materials) from 2-in diameter 99.9999% pure and 99.99% pure metal Cd and In targets, respectively, using reactive HiPIMS (Starfire Industries Impulse Pulsed Power Module and Advanced Energy MDX 1.5K DC power supply) and radio frequency (RF) plasma (Kurt J. Lesker R301 RF Power Supply) drives, respectively. HiPIMS drive conditions are 800-Hz frequency and 80-μs pulse time, producing a 1250-μs period and 6.4% duty cycle. RF power is controlled between 0 and 40 W (0 and 2 W/cm2). Magnetrons are oriented in a sputter-down geometry with ~45° incidence angle. Substrates are adhered to a stainless steel sample holder using silver paint (Ted Pella) and heated to 400°C prior to and during deposition using a radiative sample heater. The deposition occurs in a mixed argon (20 sccm) and oxygen (14.4 sccm) environment with a total pressure of 10 mTorr. After deposition, samples are annealed in static oxygen at 635°C for 30 min. These annealing conditions have shown to yield the best balance between maximizing oxygen content and improving crystallinity without degrading the CdO film which will volatize Cd at higher temperatures.

Electronic properties are measured in the van der Pauw configuration using an Ecopia HMS-3000 Hall Effect measurement system with a 0.545 T magnet. X-ray reflectivity is used to measure film thickness via a PANalytical Empyrean x-ray diffraction (XRD) in a parallel beam geometry with a double-bounce monochromator and a parallel-plate collimator. Atomic force microscopy (AFM) images were collected using an Asylum Research MFP-3D AFM in tapping mode. IR attenuated total reflectance (ATR-IR) spectra are collected in the Kretschmann configuration using an IR variable-angle spectroscopic ellipsometer (J. A. Woollam IR-VASE) and a right-angle CaF$_2$ prism to couple light into the films from the back side of the substrate. An index matching fluid (Cargille Series M, $n = 1.720$) is used between the prism and substrate to enhance light coupling. The UV-VIS optical properties were collected in transmission using a Perkin-Elmer Lambda 25 UV/VIS spectrometer in the 190–1100 nm wavelength range with 2-nm resolution.

Temperature dependent electrical transport measurements were collected using a standard four-probe method in a Physical Property Measurement Systems (PPMS, Quantum Design). The temperature dependence of longitudinal resistivity (ρ_L) was measured between 3 and 300 K.

Thermal conductivity was measured using time-domain thermoreflectance (TDTR). This optical pump-probe technique has been used extensively for determining the thermal conductivity of thin films [32–34], including previous work on Dy: CdO films and doped/intrinsic CdO multilayer films [6,35,36], and is described in-depth elsewhere [37,38]. In this work, a 70+/−5 nm aluminum transducer is deposited on the CdO films, which is ideal for the two-tint TDTR system [39]. To accurately separate the intrinsic thermal conductivity
of the CdO film from the thermal resistances of the Al/CdO and CdO/Al₂O₃ interfaces, the modulation frequency of the pump beam is varied from 1.05 to 8.40 MHz with an electro-optical modulator, which effectively varies the sensitivity of the TDTR thermal model to various thermophysical parameters [40]. As the pump and probe are focused to spot sizes of 23 and 11.5 μm, respectively, the primary source of error is due to the uncertainty in the Al transducer thickness. Note that literature values are assumed for the heat capacity of CdO in our thermal analysis [41].

III. RESULTS AND DISCUSSION

Carrier concentration and mobility directly affect plasma frequency and quality factor of plasmonic absorption as well as other transport properties. Optical mobility is the preferred metric to quantify optical losses, as DC mobility is strongly frequency dependent [42]. However, the relative trends are the same for optical and DC mobility as shown previously in In:CdO by Nolen et al. [31] and thus DC mobility values are presented here. To characterize electronic properties as a function of In content, Hall effect measurements are performed for a series of In:CdO both before and after a 30-min anneal in static oxygen, as shown in Figs. 1(a) and 1(b). The In magnetic netron power density is varied between 0 and 2 W/cm² while Cd flux is current-controlled at a constant 0.12 A, yielding an average deposition rate of ∼22 nm/min. Thickness is kept constant at approximately 180 nm. At low power densities, the carrier concentration is about 2.5 × 10¹⁹ cm⁻³ and mobility is about 300 cm²/Vs for both the as-deposited and annealed states. Very little change occurs in CdO transport properties until the In power density exceeds about 0.3 W/cm². Above this range both carrier density and mobility begin to increase. When the In power density reaches a threshold (in this system, 0.5 W/cm²), the carrier density reaches 6.0 × 10¹⁹ cm⁻³ in the annealed state and the mobility peaks at ∼400 cm²/Vs, then experiences a small reduction to about 350 cm²/Vs at the highest density as shown in Fig. 1(b). The relationship between In content and electronic properties can be attributed to a combination of intrinsic and extrinsic defect formation as described by the following Kröger-Vink equations:

\[\text{Cd}_x^y + O^\cdot \rightleftharpoons V^\text{V} + \text{Cd}_x^y + 2e^- + \frac{1}{2}O_2(g). \quad (1) \]

\[\text{In}_2O_3 \rightleftharpoons 2\text{In}_x^y + 2O^\cdot + 2e^- + \frac{1}{2}O_2(g). \quad (2) \]

CdO tends toward n-type conductivity due to its high propensity for oxygen loss, which manifests in anion vacancies compensated by free electrons, as shown by Eq. (1). High temperatures and low oxygen pressures drive this reaction to the products side. Indium incorporation on Cd sites, at least at low-to-medium concentrations, is also electron compensated as shown in Eq. (2). These two defect equilibrium reactions occur simultaneously, interacting with each other and their environments. For the situation of strong In-doping one expects a large electron concentration that is pinned by composition via the relative Cd and In fluxes from the individual sputter cathodes. Since \(n_e \) is also on the products side of Eq. (1), Le Chatelier’s principle suggests that the reaction will shift to the reactants side, thereby suppressing oxygen vacancy formation. Oxygen vacancies produce a large strain field (confirmed by density functional theory calculations [6]) and are doubly charged (presenting a fourfold higher ionized impurity cross section than singly charged defects), so reducing \([V^\text{V}] \) through donor doping strongly reduces carrier scattering and boosts mobility, despite the presence of In impurities [43]. A modest reduction in the mobility does occur at the highest In levels where we anticipate electron-electron scattering and/or the formation of \(V_{\text{Cd}}^{\prime\prime} \) as the preferred compensating species, as we discuss below.

Similar donor doping effects have been reported for Dy, Y, and F incorporation in CdO [6,19,20]. These dopants nonetheless cause a significant drop in mobility at high carrier concentrations. As we show here, however, In doping allows mobilities \(\geq 350 \text{ cm²/Vs} \), even in samples with \(n_e \) as high as \(4 \times 10^{20} \text{ cm}^{-3} \). Kelley et al. and Runnerstrom et al. found maximum carrier density values (while retaining high mobility) of \(2.5 \times 10^{20} \text{ cm}^{-3} \) and \(1.6 \times 10^{20} \text{ cm}^{-3} \) for Y and F donor doping, respectively, in HiPIMS-deposited CdO [19,20]. The comparison between Y- and In-doping is particularly
interesting because both cases involve the same HiPIMS/RF reactive cosputtering process, while F-doping involved introducing CF₄ gas to incorporate the dopant. Despite not maintaining high mobilities at as high carrier densities, Y doping exhibits a higher peak mobility (> 400 cm²/V s) than realized through In-doping. Typically, such differences in dopant behavior can be attributed to differences in ionic radii between the dopant and host atoms, as large differences may produce strong scattering sites. Based on ionic radii differences, Y³⁺ and In³⁺ should locally produce 4.6% and 13.8% tensile strains if substituted for Cd²⁺, respectively [44]. The higher peak mobility at modest Y concentrations may be attributed to lower local strain.

To explain the sustained high mobility values in high carrier density In:CdO, we speculate that the much smaller electronegativity difference between In and Cd (ΔE < 0.1) in comparison to that of Y and Cd (ΔE ~ 0.4) is the predominant influence. In our working model, the similar ionicity of the In-O bond allows high incorporation without phase separation, and electrostatic compensation primarily through donor creation. Better hybridization of In-donor and CdO-conduction-band-edge states is likely the underpinning cause.

This reasoning may also support the high peak mobility observation in Y:CdO. It is possible that Y incorporation at sufficiently low concentrations has a smaller influence on the conduction band minimum due to the higher electronegativity difference as well as poor hybridization between the d orbitals of Y and the s and p orbitals of Cd, limiting ionized impurity scattering [45,46]. This, coupled with minimal tensile strain due to similar lattice constants may allow for higher peak mobility at low Y concentrations. However, it should be noted that these higher mobility values were only observed at carrier densities well below those achieved with In and that the characteristic sharp drop off in mobility is observed at higher carrier concentrations. At Y concentrations exceeding ~2 × 10²⁰ cm⁻³, x-ray linewidths broaden and mobility falls suggesting a possible solubility limit and formation of structural defects that reduce mobility faster than in the case of In incorporation at higher carrier densities. Yang et al. also witnessed this effect in Y:CdO, and attributed the limited carrier concentration and mobility decrease to lower Y solubility in the CdO lattice as well as the tendency of Y d-band states to perturb the conduction band minimum of Y:CdO at higher concentrations [45]. This is discussed further in the Supplemental Material [47].

To investigate the slight mobility drop with increasing In content observed in Fig. 1(b), we first performed x-ray diffraction analysis to explore possible crystallographic origins. Sets of θ–2θ and ω patterns are shown in Figs. 2(a) and 2(b), respectively, for the postanneal In:CdO doping series presented in Fig. 1(b). Full width at half maximum (FWHM) for θ–2θ scans are nearly identical. The (002) peak indicates a rocksalt structure; no other peaks are present in any films suggesting phase purity. There is little to no shift in this peak with increasing carrier density, showing that epitaxy, phase purity, and out-of-plane lattice constant do not change significantly with doping. A narrow 2θ range is shown such that peak similarities are evident. Wide angle scans are available in the Supplemental Material [47]. The FWHM for the ω scans in Fig. 2(b) exhibit modest broadening (up to about 0.5°) at higher In levels indicating stronger out-of-plane mosaicity, which may contribute to the slight drop in mobility at these higher carrier densities. Then, the FWHM decreases again at the highest doping level. The FWHM values are plotted in the Supplemental Material [47]. This result can be compared to ω scans of Y:CdO [20], which demonstrate substantial
broadening (FWHM > 1.2 degrees) at carrier densities above about $2 \times 10^{20} \text{cm}^{-3}$, accompanied by a significant drop in mobility. This broadening indicates more orientational disorder with respect to the substrate normal, and thus a shorter coherent crystal length in-plane. The origin may be chemical segregation, dopant aggregation, or phase separation that is below the detection limit of a laboratory diffractometer. Regardless, each one should serve to scatter electrons and reduce mobility. In substitution for Cd can produce carrier densities in the same 10^{20}cm^{-3} range without so drastic a change in rocking curve breadth. This supports the claim that In is more easily soluble in CdO than Y, resulting in improved crystallinity and higher mobility at higher carrier densities. The data provided from this sample series is typical of heteroepitaxial In:CdO films on r-plane Al$_2$O$_3$ with a (001) growth habit, grown under similar conditions with similar transport properties. While it is nearly impossible to reproduce identical deposition conditions, and by extension identical data, general trends reported here are aligned with comparable measurements reported previously, as we have extensively connected mosaicity and rocking curve widths with overall CdO crystal quality and optoelectronic properties [6,19,20,29].

To assess film surface microstructure, AFM was used for three annealed films representing low, medium, and high dopant levels as shown in Fig. 3. There is an apparent change from step-and-terrace growth to screw dislocation-mediated growth at higher doping levels. The images show a grainy morphology for the low-doped case with average feature sizes initially around 100 nm, a transition to smaller, but still grainy features in the medium-doped sample, and then transition to a faceted morphology at the highest doping content. We speculate that this transition originates from the well-reported surfactant effect that often accompanies In-incorporation in nitride and oxide growth [48–51]. Baldini et al. reported that In acts as a surfactant, enhancing the surface diffusion length and driving improved surface morphology of (Ga$_{1-x}$In$_x$)$_2$O$_3$ [51]. A longer surface diffusion length is consistent with the smoother films (that express the step-and-terrace morphology of the underlying r-plane sapphire) at medium doping, and then the 90° faceting consistent with the 001-oriented rock salt habit at the highest doping. For Y-doped CdO, Kelley et al. reported consistent step-and-terrace growth with a monotonic decrease in grain size at higher dopant levels accompanied by a significant drop in mobility [20]. It is possible that a surfactant effect-induced morphology transition from grainy to step-and-terrace growth to screw dislocation-mediated growth...
TABLE I. Hall data and bandgap values for samples indicated in Fig. 5.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Carrier concentration (cm$^{-3}$)</th>
<th>Mobility (cm2/V s)</th>
<th>Bandgap (eV)</th>
<th>Standard deviation (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.2×10^{19}</td>
<td>298</td>
<td>2.28</td>
<td>0.002</td>
</tr>
<tr>
<td>b</td>
<td>2.5×10^{19}</td>
<td>315</td>
<td>2.29</td>
<td>0.002</td>
</tr>
<tr>
<td>c</td>
<td>1.2×10^{20}</td>
<td>365</td>
<td>2.51</td>
<td>0.009</td>
</tr>
<tr>
<td>d</td>
<td>2.9×10^{20}</td>
<td>331</td>
<td>2.73</td>
<td>0.009</td>
</tr>
<tr>
<td>e</td>
<td>3.5×10^{20}</td>
<td>334</td>
<td>2.81</td>
<td>0.009</td>
</tr>
<tr>
<td>f</td>
<td>5.0×10^{20}</td>
<td>326</td>
<td>2.86</td>
<td>0.007</td>
</tr>
</tbody>
</table>

at high In concentrations is important to sustaining the high mobility values in this heavily doped region, and to cap, and potentially reduce, film mosaicity in the same composition space.

A plateau in carrier concentration is observed in annealed films in Fig. 1(b) around 4×10^{20} cm$^{-3}$ for the highest In fluxes where additional In does not produce more carriers. This limit persists even at In power densities beyond 2.0 W/cm2. We speculate that high doping pushes the Fermi energy so far into the conduction band that the energy cost of an electronically compensated InCd$^+$ is no longer the lowest value for the available options. It is likely in this case that V$_{Cd}^-$ are easier to form as suggested in the calculations of Sachet et al. [6] This mechanism is consistent with the mobility drop that accompanies the carrier plateau, which would be expected from a growing population of divalent metal vacancy scattering centers. The transition from electronic to ionic compensation will be a function of the Cd chemical potential, which can, in principle, be tuned to shift the transition to higher carrier densities.

We evaluate this hypothesis by preparing CdO thin films at lower temperatures (200 °C) to minimize Cd volatility, and increasing Cd flux to drive more Cd into the film while proportionally increasing In flux to maintain high In incorporation: measures that should shift the defect equilibrium to conditions of maximum electronic carriers with minimum metal vacancies. Both of these were performed in films about 100-nm thick, and boosted carrier density to $\sim 5.0 \times 10^{20}$ cm$^{-3}$.

To gain further insight into In-doping, residual resistivity ratio (RRR, ρ_{300K}/ρ_3) is determined from measuring temperature-dependent longitudinal resistivity of annealed In:CdO films using a standard four-point-probe method in a PPMS. At lower temperatures, resistivity decreases due to suppressed electron-phonon scattering, resulting in RRR values greater than 1. Doping introduces more impurities into the system which is reflected by the increased RRR values with carrier concentration. Raw resistivity vs temperature data is presented in the Supplemental Material [47]. To more directly observe phonon behavior in In:CdO, room temperature thermal conductivities are measured by TDTR as shown in Fig. 4. The lattice (k_l) and electronic (k_e) contributions of the thermal conductivity are calculated using the Wiedemann-Franz law. These calculations account for variability in the Lorenz number in degenerate semiconductors with increased doping [52–54]. As more impurities are introduced to the system with increased doping, phonon-ion and phonon-electron scattering increase. Therefore, phonons cannot transport heat as well, causing a decrease in k_l (shown in the Supplemental Material [47]), which is calculated by $k_{total} = k_e + k_l$. Consequently, the thermal conductivity becomes dominated by its electronic contribution, thus the increase in k_e. The increased phonon-electron scattering also explains the increase in RRR with doping. The increase of RRR and thermal conductivity (k_{total}) with doping is consistent with trends presented by Sachet et al. for Dy:CdO in this carrier density range [6].

The degenerate nature of CdO thin films across a broad doping window motivates the possibility of a Burstein-Moss shift as the Fermi energy is pushed further into the conduction band [45,55,56]. Transmittance spectra in the UV-VIS spectral range confirm this blueshift in optical band gap with increasing doping concentration as shown by the Tauc plot in Fig. 5. Using a direct band gap model for CdO [57] and

![Fig. 6. (a) Simulated and (b) experimental reflectometry maps of ENZ modes in 29 nm In:CdO sample with $n = 2.7 \times 10^{20}$ cm$^{-3}$ and $\mu = 281$ cm2/V s.](035202-6)
extrapolating linear fits of each data set to the abscissa indicates a Burstein-Moss shift of approximately 0.58 eV upon increasing the carrier concentration to 5.0 × 10^{20} cm\(^{-3}\). Bandgap values are reported in Table I. Full range transmission spectra, details of the fitting procedure, and a discussion of the optical band gap calculation are available in the Supplementary Material [47].

The ability to sustain high mobility values in In-doped CdO thin films from 2 × 10^{19} through 5 × 10^{20} cm\(^{-3}\) enables one to tailor the bulk plasma frequency and thus the ENZ modal frequency over a wavelength range capturing the entire mid-IR and pushing into the near-IR, while the ability to retain a smooth morphology over a thickness range spanning 10s to 100s of nanometers allows one to engineer the perfect absorbing ENZ condition. Under the assumption that CdO films behave as Drude metals in the IR (which was demonstrated by Nolen et al. [31]), the frequency-dependent dielectric function in the mid- to near-IR is given as

\[
\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega^2 - i\omega\Gamma},
\]

where \(\varepsilon_{\infty}\) is the high-frequency dielectric constant, \(\Gamma\) is the damping rate, and \(\omega_p = \sqrt{ne^2/m^*\varepsilon_0}\) is the plasma frequency [58,59]. CdO thin films can support both SPP and ENZ modes [19,30]. The Drude model has been used for transfer matrix method (TMM) simulations of both, which match well to experimental data [19,30]. Here we use ENZ modes to demonstrate plasma frequency tunability, as they can be achieved with lower film thickness and are weakly dependent on incident angle, allowing for simpler fabrication and measurements. From Eq. (3), the frequency at which an ENZ mode is supported can be approximated as [13]

\[
\omega_{\text{ENZ}} \approx \sqrt{\frac{\omega_p^2}{\varepsilon_{\infty}} - \Gamma^2}.
\]

To explore our access to mid- and near-IR ENZ modes, a MATLAB script discussed in previous work [29,30] that employs the TMM is used to simulate combinations of carrier density and thickness that would produce ENZ.

Table II. Thickness, electrical properties, and optical properties for samples indicated in the ATR-IR curves in Fig. 5.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Thickness (nm)</th>
<th>Carrier concentration (cm(^{-3}))</th>
<th>Mobility (cm(^2)/V s)</th>
<th>Extinction peak position</th>
<th>Extinction peak FWHM</th>
<th>Percent absorption</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>181</td>
<td>3.193 × 10^{19}</td>
<td>350</td>
<td>1651 cm(^{-1})</td>
<td>226 cm(^{-1})</td>
<td>75</td>
<td>7.4</td>
</tr>
<tr>
<td>b</td>
<td>135</td>
<td>4.992 × 10^{19}</td>
<td>383</td>
<td>2098 cm(^{-1})</td>
<td>252 cm(^{-1})</td>
<td>71</td>
<td>8.4</td>
</tr>
<tr>
<td>c</td>
<td>133</td>
<td>5.748 × 10^{19}</td>
<td>388</td>
<td>2253 cm(^{-1})</td>
<td>321 cm(^{-1})</td>
<td>70</td>
<td>8.4</td>
</tr>
<tr>
<td>d</td>
<td>93</td>
<td>8.303 × 10^{19}</td>
<td>378</td>
<td>2646 cm(^{-1})</td>
<td>353 cm(^{-1})</td>
<td>60</td>
<td>8.0</td>
</tr>
<tr>
<td>e</td>
<td>72</td>
<td>1.163 × 10^{20}</td>
<td>346</td>
<td>3094 cm(^{-1})</td>
<td>467 cm(^{-1})</td>
<td>63</td>
<td>6.7</td>
</tr>
<tr>
<td>f</td>
<td>40</td>
<td>1.317 × 10^{20}</td>
<td>319</td>
<td>3294 cm(^{-1})</td>
<td>281 cm(^{-1})</td>
<td>59</td>
<td>11.8</td>
</tr>
<tr>
<td>g</td>
<td>38</td>
<td>1.606 × 10^{20}</td>
<td>269</td>
<td>3711 cm(^{-1})</td>
<td>362 cm(^{-1})</td>
<td>54</td>
<td>10.3</td>
</tr>
<tr>
<td>h</td>
<td>29</td>
<td>2.158 × 10^{20}</td>
<td>284</td>
<td>4243 cm(^{-1})</td>
<td>403 cm(^{-1})</td>
<td>77</td>
<td>10.6</td>
</tr>
<tr>
<td>i</td>
<td>29</td>
<td>2.690 × 10^{20}</td>
<td>281</td>
<td>4590 cm(^{-1})</td>
<td>378 cm(^{-1})</td>
<td>85</td>
<td>12.2</td>
</tr>
<tr>
<td>j</td>
<td>24</td>
<td>2.969 × 10^{20}</td>
<td>291</td>
<td>4860 cm(^{-1})</td>
<td>341 cm(^{-1})</td>
<td>80</td>
<td>14.3</td>
</tr>
<tr>
<td>k</td>
<td>22</td>
<td>3.920 × 10^{20}</td>
<td>275</td>
<td>5323 cm(^{-1})</td>
<td>385 cm(^{-1})</td>
<td>69</td>
<td>13.9</td>
</tr>
</tbody>
</table>
perfect absorbers at various wavelengths. For simplicity, these calculations assumed an effective mass of 0.21 and a high-frequency permittivity of 5.3, as reported in the literature [57,60] though Nolen et al. demonstrated that effective mass should increase slightly with higher doping. These simulated results guide fabrication of a In:CdO thin film series supporting ENZ modes spanning the entire mid-IR and pushing into the near-IR up to wavelengths of about 1.9 μm. These simulations provide a rather accurate prediction of the dispersion curve of the ENZ layer (Fig. 6). IR optical spectra are measured by ATR-IR at a 50-degree incident angle using a right-angle CaF2 prism and an IR-VASE. Normalized ATR-IR spectra for these films are shown in Fig. 7, plotted as the ratio of p- to s-polarized light \((R_p/R_s) \). The thickness, electrical, and optical data are summarized in Table II. Percent absorption is determined by \(1 - R_p/R_s \) (non-normalized) for the peak minimum in each curve. Extinction peak FWHM is calculated using a Lorentzian fit for each curve. Here we demonstrate sharp absorption features with peak widths as low as 226 cm\(^{-1}\) and Q factors (ratio of peak energy to peak width) as high as 14.3.

IV. CONCLUSIONS

We have demonstrated that In is a viable dopant for CdO as a tunable plasmonic material, allowing for broad accessibility of the IR spectrum (through the mid-wave-IR and into the near-IR) via low-loss ENZ polaritons. By controlling deposition time and power density of the In dopant magnetron during deposition, we can control thickness and carrier density, allowing for engineering of plasmon modes such as perfect absorber ENZ layers that span wavelengths of 6–1.9 μm. The high mobilities realized across a wide range of carrier densities allow for strong plasmonic absorption and high Q factors. \(\theta - 2\theta \) and \(\omega \) XRD curves indicate phase purity across a broad In doping range and a slight maxima in out-of-plane mosaicity at intermediate dopant concentrations. AFM shows changes to a smoother morphology at higher doping, with a change in growth habit from step-and-terrace growth to screw dislocation-mediated growth. Comparison of \(\omega \) rocking curves and AFM data between In:CdO and Y:CdO films complement the observed higher mobility at higher carrier densities in In:CdO. RRR values from low temperature resistivity measurements and thermal conductivity from TDTR measurements over a range of carrier densities show that phonon-phonon and phonon-electron scattering increase with doping, consistent with trends previously shown in CdO \([6,35]\). UV-VIS transmission spectroscopy demonstrates the Burstein-Moss shift present with increased doping, as the Fermi level is pushed further into the conduction band. This work, in addition to our previous study of the dielectric function of In:CdO \([31]\), provide a comprehensive review of the effects of In doping in CdO, paving the way for future IR plasmonic device design using In:CdO.

ACKNOWLEDGMENTS

We gratefully acknowledge support from Office of Naval Research (ONR) Grant No. N00012-18-1-2107 and Army Research Office (ARO) Grant No. W911NF-16-1-0406. We also received support from the Department of Defense (DoD) through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program. K.P.K acknowledges support from the Center for Nanophase Materials Sciences, which is a U.S. Department of Energy (DOE) Office of Science User Facility. Z.Q.M. acknowledges support from the U.S. National Science Foundation (NSF) under Grant No. DMR1707502. This work was also supported in part by the NSF I/UCRC on Multi-Functional Integrated System Technology (MIST) Center; IIP-1439644, IIP-1439680, IIP-1738752, IIP-1939009, IIP-1939050, and IIP-1939012.

[13] G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Demonstration of Al:ZnO as a plasmonic

