
Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201805004

Charge-Induced Disorder Controls the Thermal Conductivity
of Entropy-Stabilized Oxides

Jeffrey L. Braun, Christina M. Rost, Mina Lim, Ashutosh Giri,
David H. Olson, George N. Kotsonis, Gheorghe Stan, Donald
W. Brenner, Jon-Paul Maria, and Patrick E. Hopkins*



     

1 

 

Supporting Information  
 

Charge Induced Disorder Controls the Thermal Conductivity of Entropy Stabilized 

Oxides 

 

Jeffrey L. Braun,* Christina M. Rost, Mina Lim, Ashutosh Giri, David H. Olson, George 

Kotsonis, Gheorghe Stan, Donald W. Brenner, Jon-Paul Maria, and Patrick E. Hopkins* 

 

1. MODELING THE THERMAL CONDUCTIVITY 

 

A. Theory 

 

Derived from the Boltzman transport equation under the relaxation time approximation,[1–4] 

the thermal conductivity is 𝜅 =
1

3
∑ ∫ 𝐶𝑗(𝜔)𝑣𝑗

2(𝜔)𝜏𝑗(𝜔) d𝜔𝑗 , where 𝐶 is mode specific heat 

capacity, ω is phonon angular frequency, 𝑣 is phonon group velocity, τ is phonon relaxation 

time, and j denotes phonon polarization. Intrinsic scattering processes involve phonon-phonon 

scattering, which include momentum conserving Normal and momentum destroying Umklapp 

processes (∝ 𝜔2), and Rayleigh scattering from mass and strain impurities resulting from, for 

example, natural isotopes and point defects (∝ 𝜔4). Extrinsic boundary scattering can result 

from sample dimensions being on the order of phonon mean free paths; for a thin film this 

takes the form 𝜏𝑏 = 2𝑣𝑗/𝑑, where d is the film thickness. For random alloys and solid 

solutions, Abeles developed the virtual crystal approximation (VCA),[5] whereby a random 

alloy is treated as an effective crystal possessing the compositionally- weighted average 

properties (sound speed, mass, atomic radii, dispersion, intrinsic scattering rates) of the 

elements or compounds constituting the virtual crystal; additional phonon scattering results 

from differences in constituent and virtual crystal properties. In general, these Rayleigh 

scattering mechanisms are derived from perturbation theory,[6] such that their use, and the 

phonon gas picture in general, become dubious when disorder becomes large.[7] Still, this 

formalism has been used to adequately model the thermal conductivity in a variety of 

materials, including SiGe,[5, 8, 9] InGaN[10], InAsP,[5] and GaInAs[5] across a range of 

compositions, and remains the standard to model alloy thermal conductivity, even within first 

principles frameworks.[11] Under the VCA, Rayleigh scattering is proportional to Γ = Γ𝑚 + Γ𝑓 

and is described by Abeles to be Γ = ∑ 𝑥𝑖[(Δ𝑚/�̅�i )2 + 2((Δ𝐺/�̅�) − 2 × 3.2𝛾(Δ𝛿/𝛿̅))
2

], 

where x is the concentration of each species, γ is an average anharmonicity of bonds, and the 

difference in mass (m), stiffness constant of nearest neighbor bonds (G), and atomic radii (𝛿) 

are with respect to their average respective quantities (�̅�, �̅�, 𝛿̅). The disorder defining Γ can 

take many forms, including mass, strain, interatomic force constant (IFC), and charge 

disorder. Because the latter three are related, we decouple Γ into mass disorder (Γ𝑚) and 

interatomic force (Γ𝑓) disorder terms. Further details are provided below. 

 

B. Model Details 

 

We model the thermal conductivity, κ, as a function of temperature, using the relation 

 

Equation S1 

𝜅 =
1

3
∑ ∫ ℏ𝜔𝑗(𝑘)𝐷𝑗(𝑘)

𝜕𝑓(𝑘)

𝜕𝑇

𝑘max

0𝑗

𝑣𝑗
2(𝑘)𝜏𝑗(𝑘) d𝑘, 
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where 𝑘 is the phonon wavevector, j is an index that refers to the polarization 

(longitudinal/transverse, acoustic/optical), ℏ is the reduced Planck’s constant, 𝜔 is the phonon 

angular frequency, 𝐷 is the phonon density of states, 𝑓 is the phonon equilibrium distribution 

function (Bose-Einstein distribution), 𝑇 is temperature, 𝑣 is the phonon group velocity 

(𝜕𝜔/ 𝜕𝑘), and 𝜏 is the phonon relaxation time. Integration in Equation (S1) is performed in 

phonon wavevector space to allow the use of numerical dispersion relations for MgO and NiO 

obtained from literature.[12, 13] However, in practice we find that Debye approximation, the 

standard for dispersion modeling of alloys whose phonon contribution to thermal conductivity 

is typically assumed to be dominated by low-frequency modes, is sufficient for modeling 

these systems. 

 

The relaxation time 𝜏 for a bulk crystal, such as MgO or NiO, is a combination of 

isotope/impurity scattering[3] (𝜏𝐼) as well as Normal and Umklapp scattering[1, 3, 14–16] (𝜏𝑁 and 

𝜏𝑈). 𝜏𝐼 is proportional to 𝜔4, while 𝜏𝑁 and 𝜏𝑈 share the same 𝜔2 dependence, so that we 

combine them into a single term. Together, the phonon relaxation time becomes 

 

Equation S2 

𝜏𝑗
−1 = 𝜏𝐼,𝑗

−1(𝑘) + 𝜏𝑁,𝑗
−1 (𝑘) + 𝜏𝑈,𝑗

−1(𝑘) = 𝐴𝜔𝑗
4(𝑘) + 𝐵𝑇𝜔𝑗

2(𝑘)exp (−𝐶/𝑇), 

 

where 𝐴, 𝐵, and 𝐶 are constants that are typically assigned based on a best-fit of Equation S1 

to experimental data. In this case, we use experimental thermal conductivity data vs. 

temperature for MgO[17] and NiO[18] to fit these constants using both an actual dispersion as 

well as a Debye dispersion. The resulting experimental data and fit are shown in Figure S1; 

similarly good fits are found for both the full dispersion and Debye dispersion. In the former 

case, A = 1.86 × 10−38 s3, B = 4.61 × 10−19 s K−1, and C = 80.3 K for MgO, while A = 4.02 × 

10−48 s3, B = 5.68 × 10−19 s K−1, and C = 41.0 K for NiO. In the latter case, A = 1.12 × 10−39 

s3, B = 9.20 × 10−19 s K−1, and C = 146.3 K for MgO, while A = −8.51 × 10−49 s3, B = 1.24 × 

10−18 s K−1, and C = 81.66 K for NiO. We note that the fitted values for A in each case were 

negligible in determining the best-fit; changing this value by several orders of magnitude 

made little difference to the fit. Moreover, when these constants are used later to model the 2-, 

5-, and 6-component systems, the mass scattering, which takes the same 𝜔4 form, 

overwhelmingly outweighs any 𝐴 obtained for the bulk crystal. 
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Figure S1. Thermal conductivity vs. temperature for MgO and NiO. Models depict the 

thermal conductivity calculated by Equation S1 with best-fit values for parameters A, B, and 

C. 

 

 

To extend this model to multi-component systems, we add the additional scattering times due 

to mass-impurity scattering[19] (𝜏𝑚), normal scattering, [10, 14] and boundary scattering (𝜏𝑏) 

resulting from finite film thicknesses (𝑑) in experimental samples. Using Matthiessen’s rule, 

the total scattering time, τ, takes the form 

 

Equation S3 

𝜏𝑗
−1 = 𝜏𝐼,𝑗

−1(𝑘) + 𝜏𝑚,𝑗
−1 (𝑘) +  𝜏𝑈,𝑗

−1(𝑘) + 𝜏𝑁,𝑗
−1 (𝑘) + 𝜏𝑏,𝑗

−1(𝑘) 

= (𝐴 +
ΓΩ

12𝜋𝑣𝑗
3(𝑘)

) 𝜔𝑗
4(𝑘) + (𝐵 +

𝑘𝐵𝛾2Ω1/3

�̅�𝑣𝑗
3 ) 𝑇𝜔𝑗

2(𝑘) exp (−
𝐶

𝑇
) +

2𝑣𝑗(𝑘)

𝑑
 

where the mass-impurity is a Rayleigh type scattering in which phonon-displacement, 

phonon-isotope impurity, and phonon-mass impurity scattering are included in Γ. 𝑘𝐵 is 

Boltzmann’s constant, 𝛾 is the Grüneisen parameter describing the average anharmonicity 

between bonds, and Ω is the volume per atom. Γ is described by[5]  

 

Equation S4 

Γ = Γ𝑚 + Γ𝑓 = ∑ 𝑥𝑖

𝑖

[(
Δ𝑚𝑖

�̅�
)

2

+ 2 ((
Δ𝐺𝑖

�̅�
) − 2 × 3.2𝛾 (

Δ𝛿𝑖

𝛿̅ ))

2

], 

where 𝑥𝑖 is the fraction of element 𝑖, 𝑚𝑖 denotes the atomic mass of species i, 𝐺𝑖represents the 

average stiffness constant of nearest neighbor bonds of species 𝑖 within the host lattice, and 𝛿𝑖 

denotes atomic radius of species 𝑖. Under the VCA, �̅� , �̅�, 𝑎𝑛𝑑 𝛿̅ are the average mass, 

stiffness, and atomic radius of the perturbed atoms, in this case the metal cations. From this 
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analytical expression, we observe that three terms dictate the Rayleigh scattering of phonons 

within a multi-component alloy or solid solution: (1) mass difference, (2) bond strength 

difference, and (3) atomic radii difference between impurity and host atom. While the mass 

differences are easily quantifiable, the latter terms, which are all related to the interatomic 

force constants, are not. Therefore, we split the summation in Equation (S4) to distinguish the 

contribution from mass and interatomic forces, Γ = Γ𝑚 + Γ𝑓. We can then model the thermal 

conductivity with and without the Γ𝑓 term to assess its contribution to the model. 

 

 
 

Figure S2. Thermal conductivity vs. temperature for (a) J14 (squares) and (b) J35 (circles), 

together with the best fit VCA model, κTotal, which is described by Equation S1 and contains 

both Umklapp and Rayleigh scattering rates in the model. κUmklapp shows the model when 

Rayleigh scattering is turned off and Umklapp scattering is on, while κRayleigh shows the model 

when Rayleigh scattering is turned on and Umklapp scattering is off. 

 

Under the VCA, all cations are assumed to have the same mass equal to the average cation 

mass, �̅�, such that mass differences in Equation (S4) are with respect to �̅�. Additionally, the 

differences in stiffness constants and atomic radii are with respect to those average quantities 

of all cations. In this case, the B and C used in Equation (S2) will take the form of the average 

B and C for each oxide constituent. However, we estimate these values based on the average 

of only two such components, MgO and NiO, due to the lack of rigorous temperature 

dependent thermal conductivity data for single crystal forms of the other constituents. 

Nonetheless, we find that this approximation B and C is relatively unimportant because the 

other scattering terms dominate the total scattering time of the system. We use the VCA with 

the relaxation time described by Equation (S3) to calculate the models. We begin with no 

fitting parameters, ignoring Γ𝑓 in Eq S4 and assuming the Grüneisen parameter is that of MgO 

(1.6). Uncertainty in the VCA is primarily from uncertainty in this Grüneisen parameter 

controlling the normal scattering rate, which we vary from 1.2 to 2.0 based on the constituent 

oxide values. We then fit for Γ𝑓  and 𝛾. All model parameters are listed in Table S1. 
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Table S1. Model parameters for VCA under a Debye approximation: γ is the Grüneisen 

parameter, Γ𝑓 is the strain portion of Γ, B and C are Umklapp scattering parameters. 

Sample B (s K-1) C (K) Γ𝑓 (no fit) 𝛾 (no fit) Γ𝑓 (best fit) 𝛾 (best fit) 

J14 1.08 ×10−18 114 0 1.6 ± 0.4 0.496 0 

J35 1.08 ×10−18 114 0 1.6 ± 0.4 1.39 0 

Co0.2Ni0.8O 1.24 ×10−18 81.6 0 1.6 ± 0.4 0.0015 1.43 

Zn0.4Mg0.6O 0.92 ×10−18 146.3 0 1.6 ± 0.4 0 0.84 

Co0.25Ni0.75O 1.24 ×10−18 81.6 0 1.6 ± 0.4 0.11 1.34 

 

The resulting models with and without fitting parameters are shown in Figure 3 of the main 

text. However, in order to justify our claim that the Rayleigh scattering mechanism is 

dominant over Umklapp scattering, we show the model with and without Rayleigh scattering 

in Figure S2. The total thermal conductivity, κTotal, represents the best fit model and considers 

both Umklapp scattering and Rayleigh scattering. κUmklapp shows the model when Rayleigh 

scattering is turned off and Umklapp scattering is on, while κRayleigh shows the model when 

Rayleigh scattering is turned on and Umklapp scattering is off. The model describing κUmklapp 

greatly overestimates the thermal conductivity and always possesses a decreasing thermal 

conductivity trend with temperature at elevated temperatures. However, considering Rayleigh 

scattering without Umklapp scattering, the model describing κRayleigh better captures the 

experimental data. This finding suggests that Rayleigh scattering is the dominant phonon 

scattering mechanism dictating the thermal conductivity in ESOs within the temperature range 

tested. 

 

The minimum limit to thermal conductivity was determined using[20] 

 

Equation S5 

𝜅min = (
𝜋

6
)

1/3

𝑘𝐵𝑛2/3 ∑ 𝑣𝑗 (
𝑇

𝜃𝑗
)

2

∫
𝑥3𝑒𝑥

(𝑒𝑥 − 1)2

𝜃𝑗/𝑇

0

 d𝑥,

𝑗

 

where 𝑛 is number density and 𝜃𝑗 = 𝑣𝑗(ℏ/𝑘𝐵)(6𝜋2𝑛)1/3 . The sound speeds, 𝑣𝑗, used to 

calculate 𝜅min are listed in Table S3. For ESO samples, these values are derived from the 

measured elastic modulus. 

 

2. MEASURING HEAT CAPACITY AND THERMAL CONDUCTIVITY 

SIMULTANEOUSLY 

 

Transient techniques used to measure thermal conductivity, such as time and frequency-

domain thermoreflectance (TDTR/FDTR), are generally analyzed with the heat diffusion 

equation so that the volumetric heat capacity and thermal conductivity are coupled through 

the thermal effusivity or thermal diffusivity, depending on the time and length scales of the 

heating event. Typically for alloys and solid solutions, a composition-weighted average is 

used to estimate volumetric heat capacity. However, recent developments in 

thermoreflectance experiments have enabled simultaneous measurements of both heat 

capacity and thermal conductivity of thin films. The conditions for doing so are outlined and 

validated in previous studies[21–23], all of which rely on the same operating principle of 

varying the modulation frequency to decouple the sensitivity of the measurement to thermal 

conductivity and heat capacity, but are carried out in different ways. There have been many 

demonstrations of this concept using both FDTR[21, 24, 25], and TDTR at multiple modulation 
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frequencies [22, 23, 26–30]. In this study, we use and compare all of these approaches to 

characterize the thermal conductivity and volumetric heat capacity simultaneously, when 

experimental conditions allow. Additionally, we extend the approach by Wei et al.[23] to 

incorporate TDTR phase data over a range of frequencies sufficient for FDTR, so as to 

combine the benefits of multifrequency TDTR and FDTR for thermal property measurement. 

This development provides a robust approach for measuring both the heat capacity and 

thermal conductivity of thin films. We mention the caveat that we are able to decouple the 

thermal conductivity and heat capacity only as much as experimental conditions allow. 

Because the samples tested here are thin films on a conductive substrate (MgO), the thermal 

penetration depth can be very high, such that the ESO sample becomes thermally thin[26] so 

that the ratio is sensitive to thermal conductivity but less sensitive to the volumetric heat 

capacity. Operating in this regime allows us to characterize the thermal conductivity with 

larger sensitivity than volumetric heat capacity; as a result, the measurement of heat capacity 

comes with large uncertainty. This concept becomes especially important at low temperatures 

where the thermal conductivity of the MgO substrate is so high that the thin film is thermally 

thin relative to the total thermal penetration depth. 

 

We use the surface fitting procedure discussed in the main text to extract thermal conductivity 

and volumetric heat capacity. Figure S3 shows the best fit model and data for J14. Fitting 

parameters include the Al/ESO thermal boundary conductance (G1 ≈ 170 MW m−1 K−1), 

thermal conductivity (κ), and volumetric heat capacity (Cv). The ESO/MgO thermal boundary 

conductance (G2) was taken to be 300 MW m−1 K−1; fitting this additional parameter gave the 

same value, but because we are insensitive to it, fitting this parameter does not provide 

additional benefit. The best fit surface is shown together with the experimental phase data in 

Figure S3(a), while Figure S3(b) and (c) show the corresponding time and frequency domain 

best fit models and data to reveal that the combination of fitted values works well to describe 

the data at all time and frequency points. 
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Figure S3. (a) J14 combined TDTR and FDTR experimental phase data and best-fit surface. 

(b) Time-domain data and best fit models. (c) Frequency-domain data and best fit models. In 

all cases, the best fit model is that of the surface fit minimization. 

 

 

 
Figure S4. Sensitivity of phase (φ) for (a) 114 nm J14 and (b) 78 nm amorphous J14 (a-J14) 

as a function of delay time and modulation frequency for thermal conductivity (κ), volumetric 

heat capacity (Cv), Al/J14(a-J14) thermal boundary conductance (G1) and J14(a-J14)/MgO(a-

SiO2) thermal boundary conductance (G2). 

 

 

Whereas the thermal boundary conductances and input parameters can generally be assumed 

independent variables in terms of their affect on the fitted parameters’ uncertainties[31], we 

recognize that κ and Cv are coupled, motivating the use of the contour approach by Wang et 

al.[26] to quantify their respective role on the total uncertainty. To obtain the contours for 

thermal conductivity determined in Figure 1 of the main text, we determine the combinations 

for κ and Cv that produce a model that falls within 2σmin, defined as[26] 

 

Equation S6 

𝜎min = ∑

∑ (
𝜙m,𝑖 − 𝜙d,𝑖

𝜙d,𝑖
)

2
𝑛
𝑖=1

𝑛

𝑞

𝑗=1

, 

 

(c)(b)

(a)

(a) (b)
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where 𝜙m is the model for the phase or ratio, 𝜙d is the experimental data for the phase or 

ratio, 𝑞 is the number of modulation frequencies used, and 𝑛 is the number of time points 

used. This contour approach reveals that for J14 and the 6-component oxides, Cv and κ can be 

simultaneously obtained. One notes, however, that Cv has a higher percentage uncertainty 

than does κ. This can be explained based on the sensitivity of the fitting parameters within the 

thermal model, R, used. The sensitivity to a parameter x is defined as[32] 

 

Equation S7 

𝑆𝑥 =
𝜕 ln(𝑅)

𝜕 ln(𝑥) 
 , 

 

 

The sensitivity is dependent on both time and modulation frequency. The sensitivity to phase 

is shown for 114 nm J14 at room temperature in Figure S4(a) to reveal that Cv and κ have 

significantly different sensitivities in both magnitude and trend across all delay times and 

modulation frequencies, which allows us to decouple the two quantities using the surface 

fitting procedure. Because the magnitude of sensitivity for κ is in general higher than that of 

Cv, the uncertainty in Cv is relatively larger; this is evidenced by the contour plot shown in 

Figure 1(c) of the main text, in which a relatively wide range of volumetric heat capacities can 

be assumed to fit a relatively narrow range of thermal conductivities. The 6-component oxides 

show similar sensitivities to J14. As a result, we are able to simultaneously measure the κ and 

Cv, but with a relatively large uncertainty in Cv. For amorphous J14 (a-J14) and 

polycrystalline J14 (p-J14), which were grown on amorphous silicon dioxide substrates, we 

are not able to reliably decouple the heat capacity from thermal conductivity. The sensitivity 

explains this as well; shown in Figure S4(b) is the sensitivity for a-J14, which reveals that κ 

and Cv have near identical values and trends over all delay times and temperature. This 

indicates that the two quantities cannot be decoupled, because the two have near-identical 

effects on the model. 

 

As mentioned previously, other approaches have been used to simultaneously measure the κ 

and Cv in thermoreflectance experiments. One of which, FDTR, was used here as well. We 

find that in general, FDTR at a single time delay gives similar fitted parameters as the 

combined TDTR/FDTR approach. We show this in Figure S5, where for J14 and all 6-

component oxides, FDTR measurements were taken at five delay times (1 - 5 ns). The best fit 

models and data, together with the extracted κ and Cv, are shown for (a) J14, (b) J30, (c) J31, 

(d) J34, (e) J35, and (f) J36. FDTR proves to be reliable for thermal conductivity 

measurements in general, for the same reason regarding sensitivity to this parameter 

mentioned above. Cv measurements are in general in agreement with the combined 

FDTR/TDTR approach, but can be highly dependent on the delay time chosen, as evidenced 

by (a) J14 and (e) J35, which could be due to differing sensitivities or experimental noise. 

Thus, the combined TDTR/FDTR approach has the advantage of fitting over a broad range of 

data to negate some of these issues from individual FDTR scans, thus reducing some of the 

artifacts that may overwhelm the determination of small differences in thermal conductivities 

between samples (e.g. the 6-component oxides). Moreover, the combined TDTR/FDTR 

approach allows us to quantify the interdependent κ and Cv uncertainties via contour plots, 

which in general relies on both time- and frequency-dependent data.[26] 

 

We next used the approach by Liu et al.[22] to vary Cv and fit κ at three frequencies. Figure S6 

shows the resulting best fit values for κ as a function of Cv. The crossing point is taken to be 

the “true” thermal conductivity and heat capacity. In this case, we used three frequencies that 

span a range large enough to make the dominant thermal property measured transition from 
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film effusivity (highest frequency) to diffusivity (mid-frequency) to the lowest frequency case 

where the substrate properties become more influential. These regimes are evidenced by the 

differing trends of κ with Cv for each frequency for (a) J14, (b) J30, (c) J31, (d) J34, (e) J35, 

and (f) J36. In general, this approach gives similar values to the combined TDTR/FDTR 

approach, but it is clear that this approach is not as rigorous, and may require user judgement 

to find the crossing point. Taking J34 as an example, the 10 MHz line crosses the 0.615 MHz 

line at ∼3.0 MJ m−3 K−1, but crosses the 4.37 MHz line at ∼3.7 MJ m−3 K−1. The 0.615 MHz 

and 4.37 MHz lines also intersect at ∼3.2 MJ m−3 K−1. In this case, it may not be clear which 

value is the correct to use. On the other hand, for J36, all three frequency lines intersect once 

at ∼3.5 MJ m−3 K−1, in general agreement with the combined TDTR/FDTR approach. This 

approach, however, has a benefit of clearly showing when thermal conductivity and heat 

capacity cannot be decoupled. This can be seen in Figure S6(g) and (h) for p-J14 and a-14, 

respectively. All frequencies have the same κ vs. Cv relation, indicating that the two quantities 

cannot be independently measured under these experimental conditions. 

 

Comparing the three approaches, we note that the combined TDTR/FDTR approach is the 

most rigorous and allows for a proper estimate of uncertainty when decoupling κ and Cv. 

Because of these benefits, we use this approach here to report measured values. We 

characterize J14 and J35 temperature-dependent data with this approach as well in order to 

extract κ and Cv as a function of temperature, using the same contour plots as we used at room 

temperature. Figure S7(a) shows the contour lines for the temperatures tested. Figure S7(b) 

shows the measured heat capacities as a function of temperature. In general, Cv falls within 

the range of Cv for each constituent oxide across all temperatures, with the exception of at 78 

K. However, the large uncertainty at this temperature due to the J14’s thermally thin nature 

and relatively high uncertainty in MgO substrate properties prevents us from accurately 

measuring this quantity. Finally, the thermal conductivities are shown as a function of 

temperature in Figure S7(c). 
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Figure S5. Best fit models and experimental FDTR data at five delay times for (a) J14, (b) 

J30, (c) J31, (d) J34, (e) J35, and (f) J36. 

(a)

(d) (e) (f)

(b) (c)
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Figure S6. Best fit thermal conductivities as a function of volumetric heat capacity using the 

approach outlined by Liu et al.[22] for (a) J14, (b) J30, (c) J31, (d) J34, (e) J35, (f) J36, (g) 

polycrystalline J14, and (h) amorphous J14. To show the comparison to the values extracted 

via the combined TDTR/FDTR approach, also shown are the contours given in Figure 1(d) of 

the main text as well as the reported values including all propagated uncertainties. 

 

 

(a) J14

(e) J35 (f) J36

(g) p-J14 (h) a-J14

(b) J30

(c) J31 (d) J34
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Figure S7. (a) Contour plot of thermal conductivity (κ) and volumetric heat capacity (Cv) for 

114 nm J14 and 109 nm J35 over a range of temperature from 78 K to 450 K. (b) Measured 

Cv as a function of temperature for J14 and J35, together with literature values[33] of Cv for 

each constituent oxide to include MgO, NiO, CoO, ZnO, CuO, and Cr2O3. (c) Measured κ as a 

function of temperature for J14 and J35. 
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3. UNCERTAINTY ANALYSIS 

 

In addition to the interdependent uncertainty of κ and Cv, there is additional uncertainty based 

on the uncertainties of input parameters to the thermal model. The uncertainty (δ) to a fitting 

parameter, x to an input parameter, y, is given by[23] 

 

Equation S8 

(
𝛿𝑥

𝑥
)

2

= (𝑅 ∗
𝛿𝜙

𝑆𝑥
) + ∑ (

𝑆𝑦

𝑆𝑥
∗

𝛿𝑦

𝑦
)

2

 

 

where 𝑅 is the signal (ratio or phase) and 𝛿𝜙 is uncertainty in absolute phase of the RF lock-

in amplifier. 𝑆𝑥 denotes sensitivity to parameter 𝑥 and the summation is over the total number 

input variables. Phase correction is post-processed[32, 34]. The RMS noise of the out-of-phase 

signal determines 𝛿𝜙; for the modulation frequencies used in this study (≥500 kHz), this RMS 

noise is small, so that in practice, only the latter term in Equation (S8) is important to 

calculate the uncertainty. The largest contributions to this term are the uncertainties in film 

thickness of the aluminum (±2 nm as determined by mechanical profilometry and picosecond 

acoustics) and film thickness of the ESO film (determined by x-ray reflectivity measurements, 

varies for each sample). 
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Figure S8. Cross-section SEM images of (a) J14, (b) J30, (c) Cu0.2Ni0.8O, (d) Co0.25Ni0.75O 

and (e) Zn0.4Mg0.6O. 

 

 

4. TESTING FOR SIZE EFFECTS IN THERMAL CONDUCTIVITY 

 

To test for size effects, additional films of roughly double the thickness were deposited for 

J14 and J30. Cross-section scanning electron microscopy (SEM) was used to measure the film 

thicknesses of these samples and the 2-cation samples. The SEM images are shown in Figure 

S8. J14 was measured to be 260 nm ± 7 nm, while J30 was measured to be 270 nm ± 14 nm. 

Both of these films are about twice the thickness of the films discussed in the main text; thus, 

we should measure a higher thermal conductivity in the thicker samples compared to the 

∼100 nm samples if boundary scattering is significantly reducing phonon mean free paths. 

However, we measure 260 nm J14’s thermal conductivity to be 3.17 ± 0.45 W m−1 K−1 and 

270 nm J30’s thermal conductivity to be 1.63 ± 0.23 W m−1 K−1. Both of these values fall 

within the thermal conductivity uncertainty of their ∼100 nm counterparts, which were 

reported in the main text as 2.95 ± 0.25 W m−1 K−1 and 1.68 ± 0.13 W m−1 K−1, for 114 nm 

J14 and 149 nm J30, respectively. The J14 film was additionally measured as a function of 

temperature to reveal similar thermal conductivities as it’s thinner counterpart. The lack of 

size effects on thermal conductivity indicates that the reported thermal conductivities are 

intrinsic values. 

  

260 ± 7 nm 270 ± 14 nm

(a)

(c)

(e)

(d)

(b)

222 ± 10 nm 175 ± 2 nm

194 ± 10 nm
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Table S2. Resulting parameter values from EXAFS analysis. All uncertainties are propagated 

though Artemis. S0
2 is the amplitude reduction factor, E0 is the inner potential energy shift, R 

is the half scattering path distance, and σ2 is the EXAFS Debye-Waller factor. 

Parameter J14 J35 

S0
2 1.0 0.85 

E0 3.0 ± 1.0  2.0 ± 1.0 

R 2.10 ± 0.02 1.96 ± 0.08 

σ2 0.0073 ± 0.0005 0.006 ± 0.002 

R 2.15 ± 0.04 1.93 ± 0.04 

σ2 0.0073 ± 0.0005 0.006 ± 0.002 

R 3.00 ± 0.01 2.86 ± 0.02 

σ2 0.0073 ± 0.0005 0.006 ± 0.002 

R - 2.97 ± 0.02 

σ2 - 0.006 ± 0.002 

 

 

5. EXAFS FITTING PARAMETERS 

 

The EXAFS fitting parameters are shown listed in Table S2. Each fit generally contains four 

fitting parameters: amplitude reduction factor S0
2, inner potential energy shift E0, half 

scattering path distance R, and EXAFS Debye-Waller factor σ2. 
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6. ELASTIC MODULUS MEASUREMENTS AND DERIVATION OF SOUND 

SPEED 

 

Contact resonance atomic force microscopy (CR-AFM)[35, 36] was used to determine the 

elastic moduli of all ESO samples. The measurements consisted of observing the change in 

the CR frequency, 𝑓2
contact, of the second eigenmode of the cantilever under a given applied 

load on the tip-sample contact. By using the spring coupled-clamped beam model with the tip 

located at the end of the beam,[35, 37] the 𝑓2
contact frequencies measured on each material were 

normalized to the first free resonance 𝑓1
air of the cantilever and used to calculate the 

normalized contact stiffness 𝑘/𝑘𝑐, with 𝑘 being the contact stiffness and 𝑘𝑐  being the 

cantilever spring constant. With the assumption of a Hertz contact geometry, the contact 

stiffnesses and the indentation moduli of the reference and AFM tip were used to determine 

the indentation modulus of a given material,[35, 37, 38] 𝑀𝑆 = [(𝑘𝑅/𝑘𝑆)3/2/𝑀𝑅  +
(𝑘𝑅/𝑘𝑆)3/2/𝑀𝑇  − 1/𝑀𝑇]−1. The indices S, R, and T denote “sample” (the ESO test 

material), “reference” (sapphire) and “tip” (silicon), respectively. The determined indentation 

modulus was converted to Young’s elastic modulus by assuming a Poisson ratio of 0.28 for 

each ESO material, 𝐸𝑆 = (1 − 𝑣𝑆
2)𝑀𝑆. Other values used were  𝐸𝑅 = 345.0 GPa and 𝜈𝑅  = 0.29 

for sapphire,  𝐸𝑇 = 130.0 GPa and 𝜈𝑇 = 0.28 for the silicon tip. The substrate contribution to 

the determined elastic moduli was found negligible for the contact geometry, film thickness, 

applied loads, and materials involved in these measurements. For each material, the measured 

CR frequencies were used to determine a weighted average and uncertainty of this average 

with the weights given by the uncertainties Δ𝑓 of the measured frequencies (the half width at 

the half height of the resonance peak). The uncertainty for each determined elastic modulus 

was calculated then by adding in quadrature the independent uncertainties from 𝑓1
air (first 

free-resonance in air), 𝑓2,𝑆
contact (second CR frequency on a test ESO sample), and 𝑓2,𝑆

contact  

(second CR frequency on the reference material),[37] 

 

Equation S9 

 

Δ𝐸𝑆 = √(
𝜕𝐸𝑆

𝜕𝑓1
air

)

2

(Δ𝑓1
air)

2
+ (

𝜕𝐸𝑆

𝜕𝑓2,𝑆
contact)

2

(Δ𝑓2,𝑆
contact)

2
+ (

𝜕𝐸𝑆

𝜕𝑓2,𝑅
contact)

2

(Δ𝑓2,𝑅
contact)

2
 

 

Figure S9 shows the second contact resonance frequency on sapphire (used as a calibration) 

and several ESO samples to demonstrate the differences observed that directly relate to the 

elastic moduli of these samples; higher frequencies are indicative of stiffer materials. The 

elastic moduli (E) among ESOs vary from ∼150 to 250 GPa. From these elastic moduli, under 

the assumption that the elastic properties are isotropic and the Poisson’s ratio (ν) is 0.28, the 

longitudinal (vL) and transverse (vT) sound speeds can be derived from the following 

equations[29] 

 

 

Equation S10 

vL = √
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
 , 
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Equation S11 

vT = √
𝐺

𝜌
 = √

𝐸

2𝜌(1 + 𝜈)
 , 

 

where ρ is the density (assumed as the theoretical density) and G is the shear modulus. The 

resulting sound speeds are listed in Table S3. 

 

Table S3. Longitudinal (vL) and transverse (vT ) sound speeds in [100] direction for the oxide 

constituent oxides that make up J14. 

 

Sample or Constituent vL [km s-1] vT [km s-1] 

J14, MgxNixCuxCoxZnxO, x = 0.2 5.63 3.11 

J30, MgxNixCuxCoxZnxScxO, x = 0.167 7.16 3.96 

J31, MgxNixCuxCoxZnxSbxO, x = 0.167 5.33 2.94 

J34, MgxNixCuxCoxZnxSnxO, x = 0.167 5.77 3.19 

J35, MgxNixCuxCoxZnxCrxO, x = 0.167 5.49 3.03 

J36, MgxNixCuxCoxZnxGexO, x = 0.167 6.67 3.68 

MgO 9.11a 6.59a 

NiO 7.39 b 3.36 b 

ZnO 6.09 c 2.76 c 

CoO 6.30 d 2.90 d 

CuO 5.20 e 2.20 e 

a) Reference 39; b) Derived from phonon dispersion, reference 13; c) Reference 40; d) Derived 

from elastic properties, reference 41; e) Derived from elastic properties, reference 42. 
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Figure S9. (a) The shift of the second contact resonance frequency on sapphire, J30, J34, and 

J35 respectively. The measurements were made under the same applied load, so the frequency 

shift reflects the stiffness of the material probe: Higher shifts on stiffer materials. The out-of-

contact frequency spectrum shows the absence of any peak in this frequency range when the 

tip is not in contact with a material. (b) The determined Young’s modulus of the samples 

probed by CR-AFM. The calculations were done by considering the sapphire as a reference 

material of Young’s modulus 345.0 GPa and Poisson’s ratio 0.29. An average Poisson’s ratio 

of 0.28 was assumed for all the other materials. The uncertainty in the calculated elastic 

modulus of a material is the standard deviation of the mean value and includes the 

uncertainties in the contact frequencies measured on that material and on the reference. A set 

of five measurements were made on each material, with two sets of measurements on sapphire 

bracketing the measurements on the test materials. 

  

(a)

(b)
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7. LITERATURE DATA FOR ELASTIC MODULUS AND THERMAL 

CONDUCTIVITY 

 

Table S4 lists the elastic moduli and thermal conductivity obtained from the listed references. 

 

 

Table S4. Elastic moduli (E) and thermal conductivities () for isotropic single crystals at 

room temperature. 

 

Material E [GPa]  [W m-1 K-1] 

Ag 87.03 a 429 b 

Al 71.26 a 237 b 

Au 89.15 a 317 b 

Cu 144.57 a 401 b 

Fe 227.48 a 80.4 b 

W 389.02 a 174 b 

K 4.51 a 102.4 b 

Na 9.24 a 143 b 

Ni 231.17 a 90.9 b 

Pb 28.28 a 35.3 b 

Ge 135.40 a 60.2 b 

Si 165.82 a 149 b 

Diamond (I/ IIa/ IIb) 1144.81 a 900/2320/1360 b 

AgSbTe2 49.49 c 0.68 d 

PbTe 67.23 e 1.7 d 

InAs 79.70 f 27 g 

SrTiO3 260.85 h 11 i 

SnTe 65.36 e 8.2 j 

SnTe:Ga, x=0.1 68.30 e 6.3 j 

Ag8SnSe6 52.63 k 0.39 k 

MgO 310 l 52 m 

Al2O3 345 m 34 m 

MAPbCl3 (cubic)  23.0 n 0.73 n 

MAPbBr3 (cubic)  17.8 n 0.51 n 

MAPbI3 (tetragonal)  12.0 n 0.34 n 

CsPbBr3 (othorombic)  13.5 n 0.46 n 

FAPbBr3 (cubic) 10.2 n 0.49 n 

YB66 362.69 o 2.55 p 

(KBr)0.81 (KCN)0.19 16.35 q 0.67 p 
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Co6S8 4.0 r 0.22 r 

Co6Se8 2.3 r 0.18 r 

Co6Te8 0.62 r 0.13 r 

[Co6Se8][C60]2  8.1 r 0.25 r 

[Co6Te8][C60]2 1.5 r 0.16 r 

C60 10 s 0.4 t 

C70 4 s 0.07 t 

BaZrO3 181 u 4.3 u 

La2Zr2O7 175 u 1.90 u 

Y2O3-stabilized ZrO2 (YSZ) 210 u 2.13 u 

NiO 175 v 34 w 

B9C 350 x 3.9 y 

(BiSbTe1.5Se1.5)1−xAgx, x = 0 72 z 0.66 z 

(BiSbTe1.5Se1.5)1−xAgx, x = 0.3 58 z 0.59 z 

(BiSbTe1.5Se1.5)1−xAgx, x = 0.6 39 z 0.61 z 

(BiSbTe1.5Se1.5)1−xAgx, x = 0.9 60 z 0.51 z 

(BiSbTe1.5Se1.5)1−xAgx, x = 1.2 58 z 0.57 z 

AlCoCrFeNi 127 aa 11 ab 

J14 152.0 m 2.95 m 

J30 236.7 m 1.68 m 

J31 158.4 m 1.41 m 

J34 180.8 m 1.44 m 

J35 151.0 m 1.64 m 

J36 229.9 m 1.60 m 

a) Reference 43; b) Reference 44; c) Reference 45; d) Reference 46; e) Reference 47;  
f) Reference 48; g) Reference 49; h) Reference 50; i) Reference 51; j) Reference 52; 

k) Reference 53; l) Reference 54; m) This study; n) Reference 55; o) Reference 56;  
p) Reference 20; q) Reference 57; r) Reference 58; s) Reference 59; t) Reference 60;  

u) Reference 61; v) Reference 62; w) Reference 18; x) Reference 63; y) Reference 64;  
z) Reference 65; aa) Reference 66; ab) Reference 67 
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Figure S10. Lattice parameter of J30 vs. temperature. The line represents the best fit to the 

data and the shaded region represents the 95% confidence bounds. 

 

8. COEFFICIENT OF THERMAL EXPANSION 

 

The coefficient of thermal expansion (CTE) was measured for composition J30 via non-

ambient XRD. A Panalytical Empyrean was equipped with an Anton-Paar HTK 1200N high-

temperature oven chamber. To avoid any significant interfacial diffusion, high temperatures 

were primarily avoided. Measurements were taken incrementally between 25 ℃ and 500 ℃ in 

air around the (002) film and substrate peaks, respectively (39- 45 2θ). The ramp rate was 60 

℃/min. and each measurement was taken within 10 degrees of incremental set points for a 

total measurement time of approximately 90 min. Using Bragg’s law, the shift in diffraction 

angle was converted to unit cell lattice parameter and plotted as a function of temperature. 

Figure S10 shows the resulting trend for the expansion of the out-of-plane lattice parameter, c, 

of J30 as a function of temperature. From the slope of the linear fit and its relationship to 

CTE, we find the linear CTE of the out-of-plane lattice parameter of J30 to be 1.2 ± 0.2 x 10−5 

K−1, which agrees well with both the previously measured CTE of J14,[68] as well as nominal 

MgO[69] and NiO.[70] 
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9. MOLECULAR DYNAMICS SIMULATIONS 

 

A. Charge induced interatomic force constant disorder 

 

Molecular dynamics simulations were performed to further probe the relationship between 

thermal conductivity, composition, and the mass and IFC disorder. The potential energy 

function (φ) between atom i and j used in the simulations consisted of an exponential-6 pair 

potential 

 

Equation S12 

ϕij =  𝐴𝑖𝑗 exp (−
𝑟𝑖𝑗

𝜌
) − 

𝐶𝑖𝑗

𝑟𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

4𝜋휀0𝑟𝑖𝑗
 

 

where the last term is defines the electrostatic interactions modeled by atom-centered point 

charges. A, ρ and C are Buckingham potential parameters taken from prior work modeling 

MgO[71] while Bader charges from Density Functional Theory (DFT) calculations were used 

for the electrostatic point charges[72]. This model is not intended to quantitatively reproduce 

thermal conductivities, but rather to explore the explicit issue of the reduction in thermal 

conductivity with the addition of a sixth cation. Three compositions are reported here, J14, 

J30 (J14+Sc), and J35 (J14+Cr). For each system, a 480 atom unit cell was populated using 

the special quasi-random structure algorithm.[73] As described in detail elsewhere, DFT 

calculations were carried out in which the structure was relaxed to minimize the energy.[72] 

The point charges used in the simulations were then set equal to the Bader DFT charges (or 

their average values). The systems used in the simulations reported here each contained 

4×4×4 unit cells for a total of 30,700 atoms. 

Using the LAMMPS package,[74] the potential energy was first minimized with respect to 

atom position, followed by equilibration at zero pressure and 300 K for 32 picoseconds using 

a Nose-Hoover thermostat. After equilibration, the thermal conductivity was calculated under 

NVE conditions using the Green-Kubo method [75–77] for 20 nanoseconds. This was sufficient 

to produce a converged value of thermal conductivity for each system. To separate the effects 

of charge from mass disorder, four systems were simulated for each of the three compositions. 

The cases include (1) individual DFT charges and individual masses being distributed 

randomly to cation positions (heterogeneous charge / heterogeneous mass), (2) a single charge 

and mass for each ion that was equal to the average of the DFT charges and atomic mass, 

respectively (homogeneous charge / homogeneous mass), (3) a single charge and distributed 

individual masses (homogeneous charge / heterogeneous mass), and (4) distributed individual 

DFT charges and a single mass (heterogeneous charge / homogeneous mass). These average 

charge and mass values are given in Table S5.  

 

The calculated thermal conductivities for all 12 systems are given Table S5 and Figure S11. 

The introduction of a sixth cation reduces thermal conductivity compared to J14 for both Sc 

and Cr, in agreement with experiment. For the three compositions, heterogeneity in either 

mass or charge reduces the thermal conductivity compared to the corresponding fully 

homogeneous systems. However, there is little difference between heterogeneity in mass and 

charge, and heterogeneity in charge only. This suggests that scattering from disorder in the 

force constants dominates over that from scattering due to mass disorder. This agrees with our 

interpretation of the VCA model’s ability to capture experimental data only when Rayleigh 

scattering from IFC disorder dominates the total phonon scattering rate dictating thermal 

conductivity.  
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Figure S11. (a) Thermal conductivities obtained from equilibrium molecular dynamics 

simulations using all combinations of homogeneous and heterogeneous mass and charge. The 

scenario that includes heterogeneous charge and heterogeneous mass most closely captures 

experimental conditions. (b) Comparison of experimental thermal conductivities to MD 

results from the heterogeneous charge / heterogeneous mass case. The MD results capture the 

reduction in thermal conductivity measured experimentally. 

 

Table S5. Thermal conductivity () results from equilibrium molecular dynamics simulations. 

Sample  [W m-1 K-1] 

Heterogeneous 

charge/ 

Homogeneous 

mass 

 [W m-1 K-1] 

Heterogeneous 

charge/ 

Heterogeneous 

mass 

 [W m-1 K-1] 

Homogeneous 

charge/ 

Heterogeneous 

mass 

 [W m-1 K-1] 

Homogeneous 

charge/ 

Homogeneous 

mass 

Average 

Charge [e] 

Average Mass 

[g mol-1] 

J14 4.9 4.9 5.7 11.5 1.285 47.09 

J30 3.9 3.5 5.7 11.4 1.283 46.72 

J35 2.9 2.9 7.6 15.0 1.333 47.84 

 

 

 

 

 

 

 

 

  

(a) (b)
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Figure S12. (a) Schematic of computational domain and (b) thermal conductivity () results 

from non-equilibrium molecular dynamics simulations vs. both parameters defining the LJ 

potential, ε (bottom axis) and σ (top axis). 

 

 

B. Charge induced interatomic force constant disorder 

 

In addition to the material specific potentials used to capture the experimentally observed 

trends in thermal conductivity, we also show that this concept of interatomic force disorder to 

reduce thermal conductivity can be generalized to other material systems. We employ the 

widely used 12-6 Lennard Jones (LJ) potential, U(r) = 4ε[(σ/r)12 − (σ/r)6], where U is the 

interatomic potential, r is the interatomic separation, and σ and ε are the LJ length and energy 

parameters, respectively. For computational efficiency the cutoff distance is set to 2.5σ for all 

the simulations and the time step is set to 1 fs throughout the simulations. As we are interested 

in understanding the general effect of mass and interatomic force constant disorder scattering 

on thermal transport in multi-atom component crystalline solid solutions as opposed to 

material specific properties, the use of the LJ potential is sufficient to provide this 

translational insight. For simplicity, the length and energy parameters are modeled for argon 

(σ = 3.405 Å and ε = 10.3 meV, respectively) with the lattice constant a0 = 1.56σ and arranged 

in an fcc lattice. The sizes of the computational domains are 10a0 × 10a0 × 80a0 with periodic 

boundary conditions applied in the x- and y- directions, whereas, fixed boundaries with 4 

monolayers of atoms at each end are placed in the z-direction. The computational domain size 

was chosen to allow us to perform nonequilibrium molecular dynamics (NEMD) simulations. 

A schematic of the simulated structure is shown in Figure S12(a). In this case, an ordered 

sublattice of argon, shown as blue atoms, is analogous to oxygen anions in the ESO 

structures, while all other atoms have increasing integer multiples of argon mass from 2× to 

5×. These additional atoms are randomly assigned to the remaining sublattice with equal 

probability, analogous to the random configuration of metal cations in the ESO structures. 

 

The computational domains are equilibrated under the Nose-Hoover thermostat and barostat 

with a fixed number of atoms, volume, and temperature. The domains are then left in an 

isothermal-isobaric ensemble with the number of particles, pressure, and temperature of the 

system held constant for a total of 2 ns at 0 bar pressure. For the NEMD simulations, a fixed 

amount of energy is added per time step to a warm bath at one end of the computational 

domain and removed in equal amount from a cool bath at the other end. The length of the 

baths is set to 10a0 in the z-direction, and the dynamics are carried out under a micro-

canonical, NVE, ensemble, with the number of particles (N), volume (V), and energy (E) held 

constant. After 2 ns, a steady-state temperature gradient in the z-direction is established by 

(a) (b)
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averaging the temperature for atoms in each monolayer for a total of another 5 ns. The 

thermal conductivity, κ is then determined by invoking Fourier’s law, 𝑄 = −𝜅(𝜕𝑇/𝜕𝑧) where 

the applied flux, Q, is in the z-direction. 

 

Whereas the addition of further mass disorder in the form of higher integer multiples of argon 

mass makes a negligible difference in thermal conductivity,[78, 79] we find that adding 

interatomic force constant disorder can significantly reduce the thermal conductivity. We 

obtain such disorder by changing the LJ parameters, ε and σ, for all impurity atom species. 

Doing so effectively adds a random disruption to the otherwise continuous network of 

identical potentials defining the bond strength between atoms. Furthermore, we can change 

the strength of this disruption by changing the magnitude of difference in ε and σ relative to 

the baseline LJ parameters for argon. Figure S12(b) shows the resulting thermal conductivity 

change with adjusting the potential. The same results are also summarized in Table S6. There 

is a clear difference in thermal conductivity of over 50% between the lowest and highest value 

with the parameters chosen, confirming that stronger deviation from the baseline LJ potential 

leads to stronger reduction in thermal conductivity. However, like the experimental study on 

the ESOs, we need an observable metric that quantifies this disorder of interatomic forces. 

With the ESOs, we were able to use strain within the oxygen sublattice to reveal such 

disorder. Likewise, in these LJ systems, we use strain as a metric to quantify the disorder in 

interatomic forces. Shown in Figure S13 are snapshots of the von Mises strain[80, 81] on atoms 

with the 5 potentials listed in Table S6. We find that the average level of strain measured in 

these simulations is directly tied to the thermal conductivity extracted in NEMD simulations; 

the larger strain, indicative of larger interatomic force constant disorder as determined by 

deviation from the baseline LJ potential, corresponds to a stronger reduction in thermal 

conductivity. 
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Table S6. Thermal conductivity of nonequilibrium molecular dynamics simulations using 

Lennard Jones potentials with varying ε and σ parameters. 

Label in Figure 

S13 

 [meV]  [Å]  [W m-1 K-1] 

(a) 10.30 3.05 0.153 

(b) 9.98 3.47 0.149 

(c) 9.66 3.54 0.139 

(d) 9.34 3.61 0.12 

(e) 8.70 3.75 0.093 

 

 

 

 
Figure S13. Snapshots of the von Mises strain on atoms when parameters are adjusted within 

the LJ potential. The LJ parameters (ε and σ) and thermal conductivity (κ) for each case are 

(a) ε = 10.30 Å, σ = 3.05 meV, and κ = 0.153 W m−1 K−1; (b) ε = 9.98 Å, σ = 3.47 meV, and κ 

= 0.149 W m−1 K−1; (c) ε = 9.66 Å, σ = 3.54 meV, and κ = 0.139 W m−1 K−1; (d) ε = 9.34 Å, σ 

= 3.61 meV, and κ = 0.12 W m−1 K−1; (e) ε = 8.70 Å, σ = 3.75 meV, and κ = 0.093 W m−1 

K−1. 
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