Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon

Ethan A. Scott, John T. Gaskins, Sean W. King, and Patrick E. Hopkins

Citation: APL Materials 6, 058302 (2018); doi: 10.1063/1.5021044
View online: https://doi.org/10.1063/1.5021044
View Table of Contents: http://aip.scitation.org/toc/apm/6/5
Published by the American Institute of Physics
Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon

Ethan A. Scott, John T. Gaskins, Sean W. King, and Patrick E. Hopkins

1Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
2Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124, USA
3Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
4Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

(Received 30 December 2017; accepted 29 April 2018; published online 14 May 2018)

The need for increased control of layer thickness and uniformity as device dimensions shrink has spurred increased use of atomic layer deposition (ALD) for thin film growth. The ability to deposit high dielectric constant (high-k) films via ALD has allowed for their widespread use in a swath of optical, optoelectronic, and electronic devices, including integration into CMOS compatible platforms. As the thickness of these dielectric layers is reduced, the interfacial thermal resistance can dictate the overall thermal resistance of the material stack compared to the resistance due to the finite dielectric layer thickness. Time domain thermoreflectance is used to interrogate both the thermal conductivity and the thermal boundary resistance of aluminum oxide, hafnium oxide, and titanium oxide films on silicon. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, which will be of great importance in predicting the thermal resistances of current and future devices. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5021044

The thermal conductivity and thermal boundary resistance between device layers play a role in the overall thermal resistance of devices, especially as device layers in a variety of applications are routinely on the order of sub-100 nm. These thermal resistances are of critical importance in consideration of current and future CMOS device performance and reliability. For example, there has been recent interest in advancing and improving fin field effect transistors (FinFETS), as their geometry yields electronic properties which identify them as highly favorable candidates for future CMOS devices; however, there are challenges associated with self-heating and heat dissipation. The low thermal conductivity of the high dielectric constant materials (high-k dielectric materials) within the devices leads to self-induced thermal runaway and breakdown. Simulations have been performed to model and gain further insight into the problem; however, the thermal boundary resistances (TBRs) at the high-k dielectric materials’ interfaces are often neglected.

Furthermore, while the overwhelming majority of studies have focused on the electronic properties of ALD high-k dielectrics, few studies have reported on thermal conductivity measurements on ALD Al$_2$O$_3$, HfO$_2$, and TiO$_2$ films. This gap in the literature is due in large part to difficulties in measuring the thermal conductivity of thin films with thicknesses of interest for

Author to whom correspondence should be addressed: phopkins@virginia.edu

2166-532X/2018/6(5)/058302/8 6, 058302-1 © Author(s) 2018
high-\(k\) dielectric layers in CMOS devices (\(<10–20\,\text{nm}\)). At these length scales, the TBR at the high-\(k\) dielectric interfaces can dominate the overall resistance, and thus, the thermal conductivity of the high-\(k\) dielectric film can be difficult to isolate. Furthermore, the variability of TBR with extrinsic parameters such as surface roughness,7,15–17 interfacial bonding environment,18–26 and other defects at or near the interface27–33 makes the measurement of the thermal conductivity, \(\kappa\), of ALD-grown thin films and their respective TBRs most critical on samples fabricated under conditions consistent with current and future CMOS devices.

In this letter, we report the thermal conductivity, TBR, and total thermal resistance for ALD-grown Al\(_2\)O\(_3\), HfO\(_2\), and TiO\(_2\) thin films on silicon substrates via time domain thermoreflectance (TDTR). These films are grown using industry standard conditions presently of interest to current and future CMOS technologies. We prepare samples with thicknesses ranging from 1 to 10 nm and apply a series resistor model for the total thermal resistance of the sample, from which we calculate the intrinsic thermal conductivity of the films and the TBR at the films’ interfaces. A representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, is presented for the samples tested. This design map will be of great importance in predicting the thermal resistances of current and future devices.

Deposition conditions and details of the high-\(k\) dielectric fabrication have been previously reported.34–36 All films were grown on double-side polished (001) silicon substrates at temperatures on the order of 300 °C using industry standard precursors and commercially available ALD tools.34,37 The silicon substrates were not subjected to an HF preclean and, as such, the native oxide remained on the wafers prior to ALD. Al\(_2\)O\(_3\) and HfO\(_2\) films were fabricated with nominal thicknesses of 1, 3, 5, and 10 nm. Films of 1, 3, and 10 nm were additionally fabricated for TiO\(_2\). Thicknesses were verified with X-ray reflectivity (XRR), which were all within 7% of the nominal value. For some of the thinnest films, the thickness was not measurable, and a thickness uncertainty of 5% was assumed.

Thermal properties were measured using TDTR38 in a “two-tint” configuration.39 TDTR is an optical pump probe measurement utilizing a short-pulsed laser system to both induce and monitor an oscillatory heating event on the surface of a metallic film opto-thermal transducer as a function of pump-probe delay time. The output of an 80 MHz Ti:sapphire oscillator (Spectra-Physics Tsunami) centered at 808 nm was spectrally split into a pump path, which was modulated using an electro-optical modulator (EOM) at 8.4 MHz, and a time delayed probe path. The pump and probe beams were collinearly focused on the surface of an ~80 nm aluminum film that was electron-beam evaporated on top of the dielectric samples, serving as the aforementioned opto-thermal transducer. A beam profiler was used to measure the 1/e\(^2\) diameter of the pump and probe, which were 32 and 12 \(\mu\text{m}\), respectively. The reflectivity of the probe beam at the pump modulation frequency was monitored via a photodiode, and the in-phase and out-of-phase signals relative to the pump modulation frequency trigger are extracted using a RF lock-in amplifier. Further details on the TDTR measurement and model used to extract thermophysical properties are detailed extensively elsewhere.7,38,40,41

Characterization of density and thickness were performed via nuclear reaction analysis-Rutherford backscattering (NRA-RBS)42 and XRR,43 respectively. HfO\(_2\) and TiO\(_2\) were found to have densities comparable to the bulk, whereas the Al\(_2\)O\(_3\) samples had densities averaging 3.3 g cm\(^{-3}\) which is 15% less than the theoretical bulk density of 3.9 g cm\(^{-3}\).44 Variations from the bulk density were used to proportionally scale the assumption for heat capacity of films used in thermal calculations. Furthermore, picosecond acoustics45,46 and mechanical profilometry were used to measure the film thickness of the aluminum transducer. The relevant sample details are presented in Table I.

As the thickness of the Al\(_2\)O\(_3\), HfO\(_2\), and TiO\(_2\) films ranged from 1 to 10 nm, there was insufficient sensitivity to measure the individual thermal resistances with TDTR. Instead, the film resistance and its associated interfacial resistances were treated as a singular, effective interface between the aluminum transducer and silicon substrate. Dividing the film thickness by this effective resistance provides an effective thermal conductivity, as shown in Fig. 1. The error bars represent the uncertainty associated with the repeatability of sample measurement with TDTR in addition to the standard
TABLE I. Summary of thermal properties for the ALD high-κ dielectrics investigated in this study along with relevant sample details. κ is the intrinsic thermal conductivity of the high-κ dielectric film and TBR is the total interfacial resistance across both interfaces of the film. Note: NM = not measurable (too thin). For these films, we assume the nominal thickness value with 5% uncertainty.

<table>
<thead>
<tr>
<th>Film</th>
<th>κ (W m$^{-1}$ K$^{-1}$)</th>
<th>TBR (m2 K GW$^{-1}$)</th>
<th>Density (g cm$^{-3}$)</th>
<th>Nominal thickness (nm)</th>
<th>Thickness (XRR) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>1.50 ± 0.09</td>
<td>6.92 ± 0.50</td>
<td>3.33 ± 0.06</td>
<td>1</td>
<td>NM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>NM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>4.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>9.39</td>
</tr>
<tr>
<td>HfO$_2$</td>
<td>1.00 ± 0.06</td>
<td>9.03 ± 0.66</td>
<td>10.33 ± 0.36</td>
<td>1</td>
<td>NM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>9.74</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>2.52 ± 0.07</td>
<td>8.01 ± 0.71</td>
<td>4.1 ± 0.14</td>
<td>1</td>
<td>NM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>NM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>10.11</td>
</tr>
</tbody>
</table>

deviation in the measurement of the thickness of the aluminum transducer and thickness of the ALD film. By applying a series resistor model that treats the total resistance as a summation of the film and interfacial resistances,47 the intrinsic film thermal conductivity and total interfacial resistance are then deconvolved from the effective thermal conductivity with the following expression:

$$\kappa_{\text{eff}} = \frac{\kappa_i}{1 + \frac{\kappa_i R_{\text{tot}}}{d}}, \quad (1)$$

where κ_i is the intrinsic thermal conductivity of the film, R_{tot} is the total interfacial resistance (i.e., the total TBR across both the Al/film and film/Si interfaces), and d is the film thickness. A non-linear least squares model fit was applied to the experimental data with κ_i and R_{tot} as the fitting parameters for each film. The intrinsic thermal conductivities and thermal boundary resistances for the films determined via Eq. (1) are listed in Table I. The corresponding uncertainties are obtained by fitting for these parameters at the experimental upper and lower bounds for κ_{Eff}.

We find good agreement between the model and experimentally measured values for effective thermal conductivity. The resultant intrinsic thermal conductivities of the Al$_2$O$_3$ films are within the range of previous measurements of amorphous ALD-grown Al$_2$O$_3$. $^{8-11}$ While several reports on the thermal conductivity of HfO$_2$ thin films exist in the literature (for a review, see Ref. 8), they range in deposition technique and crystallinity. We are only aware of one previous work on the thermal

FIG. 1. Measured effective thermal conductivities of TiO$_2$ (triangles), Al$_2$O$_3$ (circles), and HfO$_2$ (squares) films ranging from 1 to 10 nm. A series thermal resistor model [Eq. (1)] is applied to the data for which the intrinsic thermal conductivity and total thermal boundary resistance are the fitting parameters. The best fits are shown as the lines in the plot.
conductivity of a purely amorphous HfO$_2$ thin film,12 and they report an intrinsic thermal conductivity of 0.58 W m$^{-1}$ K$^{-1}$ (note, we find $\kappa_{i,HfO_2} = 1.00$ W m$^{-1}$ K$^{-1}$, cf. Table I). We are currently unaware of the reason for the difference in these reported values. However, we note that Ref. 12 does not report the density of their HfO$_2$ films, and any difference in density could result in changes in thermal conductivity in the amorphous films, as we have previously shown in ALD-grown Al$_2$O$_3$.10 Given the differences in growth temperatures of the ALD films grown in this work compared to those grown in Ref. 12 (along with other possible differences in fabrication procedures), a difference in density being at least the partial source of the discrepancies in reported κ_{i,HfO_2} is a reasonable speculation. The measured thermal conductivity of our ALD-grown TiO$_2$ films is nearly a factor of 2 higher than that reported for an amorphous ALD-grown TiO$_2$ film from our previous work.13 Our current films are more dense than those we previously measured in Ref. 13 (densities listed in Table II), which can account for part of this difference.10 However, another possible explanation could be due to the partial crystallization of our current ALD TiO$_2$ films with increasing thickness. Mitchell \textit{et al.}48 demonstrated that for ALD-grown TiO$_2$ films deposited under nearly identical conditions (Si substrate with native oxide, deposition temperatures between 250 and 300 °C), the films remain amorphous for thicknesses on the order of 2.4 nm and begin to crystallize at thicknesses of 20 nm. As the TiO$_2$ films in this study included thicknesses of 1, 3, and 10 nm, it is possible that the thicker films in our study are actually partially crystalline, which would increase the thermal conductivity. The effects of the onset of crystallinity on the thermal conductivity of ALD grown TiO$_2$ are beyond the scope of this current work. A summary of previous reports of the thermal conductivity of ALD-grown amorphous thin films compared to those reported in this current work, along with ranges of thicknesses and densities, is given in Table II.

The thermal conductivity and total TBR, shown in Table I, are recast as a combined effective thermal resistance as a function of dielectric layer thickness in Fig. 2. The black lines in Figs. 2(a)–2(c) represent the total effective thermal resistance. This includes the resistance attributed to the aluminum/film interface, resistance inherent to the film, and also that of the film/substrate interface. To approximate the thermal resistance contribution from the film/substrate interface, we subtract the resistance from the aluminum/film interface. As we are insensitive to measurements of this value, we assume a resistance at the aluminum/high-k dielectric film interface of 3.34–6.67 m2 K GW$^{-1}$ which spans a range representative of what is found in the literature for Al/dielectric interfaces.7,40 The shaded regions in Figs. 2(a)–2(c) then represent the upper and lower bounds for the thermal resistance attributed to the film and film/silicon substrate interface. In other words, the lower bound of the shaded region represents the lower limit to the thermal resistance which can be attributed to the ALD film plus the film/substrate interface and vice versa for the upper bound of the shaded region.

It is clear that in the limit of a film approaching zero thickness, the TBRs govern the total thermal resistance. We also note that the Al$_2$O$_3$ system offers the most efficient method with which to dissipate heat for films of thickness less than 10 nm, owing to the low TBR at its interfaces relative to the other two films. At larger thicknesses, a TiO$_2$ film on the Si substrate system demonstrates the highest efficiency for heat dissipation as the elevated thermal conductivity compensates for the higher thermal boundary resistance at larger film thicknesses, compared to Al$_2$O$_3$. Conversely, HfO$_2$

TABLE II. Summary of the literature values for thermal conductivity of ALD-grown Al$_2$O$_3$, HfO$_2$, and TiO$_2$ amorphous thin films. Reported film thicknesses and densities are also included. Also included are the values for the intrinsic thermal conductivities of the films in this study, repeated from Table I.

<table>
<thead>
<tr>
<th>ALD film</th>
<th>κ (W m$^{-1}$ K$^{-1}$)</th>
<th>Thickness (nm)</th>
<th>Density (g cm$^{-3}$)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>1.3–2.6</td>
<td>10–200</td>
<td>2.7–3.1</td>
<td>8–11</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>1.50 ± 0.09</td>
<td>1–10</td>
<td>3.33 ± 0.06</td>
<td>This study</td>
</tr>
<tr>
<td>HfO$_2$</td>
<td>0.58</td>
<td>5.6</td>
<td>Not reported</td>
<td>12</td>
</tr>
<tr>
<td>HfO$_2$</td>
<td>1.00 ± 0.06</td>
<td>1–10</td>
<td>10.33 ± 0.36</td>
<td>This study</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>1.33</td>
<td>98.3</td>
<td>3.65</td>
<td>13</td>
</tr>
<tr>
<td>TiO$_2$*</td>
<td>2.55 ± 0.07</td>
<td>1–10</td>
<td>4.1 ± 0.14</td>
<td>This study</td>
</tr>
</tbody>
</table>

*Possible crystallinity hypothesized in thicker films.
FIG. 2. Effective thermal resistances for ALD-grown high-\(k\) dielectric (a) Al\(_2\)O\(_3\), (b) HfO\(_2\), and (c) TiO\(_2\) films studied in this work. The black lines in each figure display the total thermal resistance. The shaded regions display the combined resistance of the film, \(R_{\text{film}}\) (where \(R_{\text{film}} \equiv d/\kappa_i\), where \(\kappa_i\) is listed in Tables I and II), and film/substrate interface, \(TBR_{\text{film/substrate}}\), assuming an Al/film interfacial resistance between 3.34 and 6.67 m\(^2\) K GW\(^{-1}\). (d) combines the effective thermal resistances displayed in (a)–(c) for comparison.

offers the lowest capacity for heat transfer across the measured thickness range due to its high TBR and low thermal conductivity, relative to the Al\(_2\)O\(_3\) and TiO\(_2\) on native oxide/silicon substrates.

Clearly, as the sample thicknesses decrease, the overall resistances of the systems become dominated by the dielectric film/Si substrate interface. To gain insight into the mechanisms that lead to the trends in dielectric film/Si substrate TBRs, we contrast our measured TBRs displayed in Fig. 2 to theoretical approximations for TBR from the diffusive mismatch model (DMM)\(^6\) using a gray approximation.\(^5\) In this limit, phonon transmissivity from layer \(i\) into layer \(j\) is calculated as

\[T_{\text{dij}} = \frac{C_j v_j}{C_i v_i + C_j v_j}, \]

where \(C\) and \(v\) are the volumetric heat capacity and phonon group velocity, respectively. The TBR is then calculated as

\[TBR = \left(\frac{C_i v_i}{4 \pi C_j v_j} \right)^{-1}. \]

While more rigorous calculations of the DMM can be performed for these interfaces by, for example, using realistic phonon dispersion relations,\(^5\)\(^1\)\(^2\) our goal in this work is to understand the trends in TBR among the different high-\(k\) dielectric film interfaces, and thus, this gray approximation is sufficient. While we caution that the exact TBR that this model predicts will not be an accurate calculation of the actual TBR that we measure, the ratios of TBRs among the different materials should be accurately represented via this approach.

For this first approximation of thermal boundary resistance, we assume literature values of 8800, 4800, and 9200 m s\(^{-1}\) for the longitudinal sound speed of the Al\(_2\)O\(_3\), HfO\(_2\), and TiO\(_2\) films, respectively,\(^5\)\(^3\) and heat capacities of 2.65, 2.71, and 2.83 J cm\(^{-3}\) K\(^{-1}\) for Al\(_2\)O\(_3\), HfO\(_2\), and TiO\(_2\), which were calculated from the molar heat capacities given in Refs. 54, 55, and 54, respectively, and the mass density listed in Table II. Additionally, we assume a volumetric heat capacity and longitudinal sound speed of 1.65 J cm\(^{-3}\) K\(^{-1}\) and 8433 m s\(^{-1}\), respectively, for the (100) silicon substrate.\(^5\)\(^6\)\(^7\) Using these values in the DMM, we calculate the ratio of film TBRs. A ratio of 1.30 is obtained for TBR\(_{\text{HfO}_2/\text{Si}}\):TBR\(_{\text{Al}_2\text{O}_3/\text{Si}}\) and 1.35 for TBR\(_{\text{HfO}_2/\text{Si}}\):TBR\(_{\text{TiO}_2/\text{Si}}\). In other words, the thermal boundary resistance between HfO\(_2\) and silicon is predicted to be at least 1.30 times larger than that of Al\(_2\)O\(_3\) and silicon and 1.35 times larger than that of TiO\(_2\) and silicon, as determined via our DMM calculations.

These ratios of TBRs generally capture our experimental observations. For example, in Fig. 2, in the limit of zero film thickness, the TBR of the film/substrate dominates the resistance displayed in the shaded regions. Therefore, in this limit, we approximate the TBR of the film/substrate interface.
as the average value of the upper and lower bound of this region. Taking the ratio of these TBRs in the same manner as previously mentioned, we find a TBR ratio of 2.08 for TBR_{HfO_2/Si}:TBR_{Al_2O_3/Si} and 1.35 for TBR_{HfO_2/Si}:TBR_{TiO_2/Si}. While the magnitudes of these ratios differ slightly from those found in the diffuse scattering limit model, the trends remain the same. The interfacial resistance of the HfO_2 films is highest, followed by Al_2O_3 and TiO_2. Furthermore, these calculations and their agreement with the relative magnitudes of the measured TBRs suggest that the differences in TBR originate due to the lower vibrational velocities in HfO_2.

In summary, we report on the intrinsic thermal conductivity and thermal boundary resistances of three atomic layer deposited high-k dielectric films—Al_2O_3, HfO_2, and TiO_2—with thicknesses ranging from 1 to 10 nm grown on native oxide/Si substrates. Prior reports on the thermal transport properties of amorphous ALD-grown films have remained limited, particularly for HfO_2 and TiO_2. We demonstrate that as the thickness of these dielectric layers is reduced, the effective thermal conductivity reduces proportionally with thickness, and the TBR across the high-k dielectric film interfaces becomes the dominant contribution to the overall thermal resistance of the material stack compared to the resistance attributed to the finite dielectric layer thickness and its intrinsic thermal conductivity. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness. We find Al_2O_3 to be the most thermally efficient film for thicknesses in the sub-10 nm regime, which we attribute to the decreased TBR at the Al_2O_3/native oxide/Si interface compared to the other systems. Above this regime, TiO_2 is the most efficient, and for all thicknesses, we find HfO_2 to be the most thermally resistive. This design map will be of great importance in predicting the thermal resistances of current and future devices.

We appreciate support from the Army Research Office (Grant No. W911NF-16-1-0320).

