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Multiple phonon processes contributing to inelastic scattering
during thermal boundary conductance at solid interfaces

Patrick E. Hopkinsa�
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New Mexico 87185-0346, USA
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A new model is developed that accounts for multiple phonon processes on interface transmission
between two solids. By considering conservation of energy and phonon population, the decay of a
high energy phonon in one material into several lower energy phonons in another material is
modeled assuming diffuse scattering. The individual contributions of each of the higher order
inelastic phonon processes to thermal boundary conductance are calculated and compared to the
elastic contribution. The overall thermal boundary conductance from elastic and inelastic �three or
more phonon processes� scattering is calculated and compared to experimental data on five different
interfaces. Improvement in value and trend is observed by taking into account multiple phonon
inelastic scattering. Three phonon interfacial processes are predicted to dominate the inelastic
contribution to thermal boundary conductance. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3169515�

I. INTRODUCTION

Thermal boundary conductance, or Kapitza
conductance,1 �K, is critical in measurement and modeling
thermal properties in a wide range of condensed matter nano-
structures ranging from carbon nanotubes,2 to superlattice
films3 and nanowires,4 to thin metal films.5–7 As nanostruc-
tures are routinely fabricated with critical lengths on the or-
der of carrier mean free paths, the need to understand the
fundamental physical processes driving �K is increasingly
important to interpret and predict thermophysical properties.8

This is especially significant with the recent results that Fou-
rier’s law breaks down even at length scales larger than the
mean free in nanostructures,9 causing �K to play a larger role
in thermal processes in low dimensional structures. The
Kapitza conductance, the inverse of which is the Kaptiza
resistance, RK, creates a temperature drop across the interface
that is related to the thermal flux by �K=1 /RK=Q12 /�T,
where Q12 is the heat flux from side 1 to side 2 and �T is the
interfacial temperature drop.

Several groups have experimentally studied parameters
that can affect �K, such as substrate damage,10 quality of
crystalline orientation,11 phonon mean free path,12 atomic
diffusion,13 and intrinsic vibrational properties of the mate-
rial �or “acoustic mismatch”�.6,7,14 Traditional models for
�K,15 however, are rooted in basic assumptions of carrier
scattering and fail to capture the experimental values and
trends on the parameters discussed above. The most drastic
example is reported by Stevens et al.,14 who measured �K at
room temperature across a wide range of acoustically mis-
matched interfaces dominated by phonon transport. Their re-
sults indicate that the diffuse mismatch model �DMM�, the
most widely used model to predict phonon interfacial
transport,15 can vary in agreement with the experimental data
by over an order of magnitude depending on the acoustic

mismatch of the sample. Several physical models have been
proposed to explain these discrepancies, including using an
exact phonon dispersion in the calculations,16,17 incorporat-
ing electron-phonon resistances at the interface,18 and ac-
counting for multiple elastic phonon scattering events around
the interface.19,20 All these cases help to explain the discrep-
ancies in the case when the two materials comprising the
interface are acoustically matched. However, attempts to ex-
plain the deviation between the acoustically mismatched ma-
terials and the DMM have resulted in two conflicting theo-
ries �electron versus phonon scattering�, the origins of which
are described below.

Stoner and Maris21 reported some of the first measure-
ments of �K at relatively high temperatures �50–300 K� on a
range of acoustically mismatched solid-solid metal/dielectric
interfaces. Their results showed that the DMM underpre-
dicted the measured �K by over an order of magnitude for
interfaces that were heavily mismatched. These surprising
results were theoretically explained with analytical studies
by Huberman and Overhauser22 and Sergeev23,24 via different
mechanisms of electron scattering at the metal/dielectric in-
terface. Since the pump-probe thermoreflectance measure-
ment technique employed by Stoner and Maris monitored the
electronic response to thermal excitations, this explanation
seemed viable until molecular dynamics simulations �MDS�
examined the phonon scattering processes affecting �K. Us-
ing classical MDS, Chen et al.25 and Stevens et al.26 found
that �K linearly increases with temperature on a variety of
acoustically mismatched interfaces. These classical MDS re-
sults, which do not take into account quantum effects, such
as temperature dependent phonon state filling below the De-
bye temperature, �D, conflict with the predictions of the
DMM.

The DMM calculations by Stoner and Maris assumed
elastic phonon scattering, that is, a phonon of frequency �
will only transfer energy across an interface by scatteringa�Electronic mail: pehopki@sandia.gov.
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with another phonon of frequency �. Therefore, the tempera-
ture dependency of �K predictions will be dictated by the
phonon population of the lower Debye temperature material.
Above the Debye temperature, the phonon population is no
longer driven quantum mechanically, but classically,27 which
takes a linear dependence on temperature. Therefore, assum-
ing elastic scattering, �K will be constant at temperatures
above the Debye temperature of the material with the lower
Debye temperature at an interface since �K is proportional to
the temperature derivative of the phonon population �this
will become more clear in Sec. II in the mathematical deri-
vation of the DMM�. Since the DMM prediction of constant
�K in the classical limit is a consequence of assuming elastic
phonon scattering at the interface, the linear prediction of �K

by the aforementioned MDS studies25,26 suggests that inelas-
tic phonon scattering events could provide additional means
of interfacial transport. This could explain the results re-
ported by Stoner and Maris.21 Recent experimental studies
by Hopkins et al.6 and Lyeo and Cahill7 reported a linear
increase in �K with temperature on a wide range of acousti-
cally mismatched interfaces, supporting the inelastic scatter-
ing theory. These experimental studies suggested that the in-
elastic scattering channel of �K could be driven by three �or
more� phonon processes at the interface, paralleling the fa-
miliar Klemens process between a high energy optical pho-
non and several lower energy acoustic phonons.28

Although the MDS and experimental studies support the
assumption that inelastic phonon scattering participates in
�K, there are no analytical models for �K that specifically
take into account the multiple phonon processes in interface
transmission, thereby physically modeling the effects of in-
elastic scattering on �K. Chen29 and Dames and Chen30 de-
veloped expressions for phonon transmission that accounts
for inelastic scattering based on the total internal energy of
each phonon system on either side of the interface; these
expressions assume phonons of all energies on both sides of
the interface are participating in �K, which does not consider
the specific allowed phonon scattering events governed by
energy conservation. Hopkins and Norris31 developed a new
model, the joint frequency diffuse mismatch model
�JFDMM�, that accounts for inelastic scattering by changing
the density of states of the phonon flux approaching the in-
terface; again, this model does not specifically examine pho-
non scattering and conservation during energy transmission.
Multiharmonic processes on phonon transmission in a two
dimensional transition layer near the interface were consid-
ered by Kosevich;32 this theory, similar to the JFDMM, as-
sumes that the transition layer allows for vibrational modes
around the interface that are not allowed in one of the mate-
rials �essentially inelastic scattering�, but does not consider
phonon scattering or quantum effects in phonon transmis-
sion. In another model, Hopkins and Norris33 separated elas-
tic and inelastic scattering contributions, but their transmis-
sion models required experimental data of �K as a function
of temperature. Obviously, there is a great need for an ana-
lytical model for �K that accounts for the multiple phonon
processes and examines the fundamental phonon physics
contributing to inelastic scattering.

In this paper, a new model for phonon transmission is

developed that takes into account multiple phonon scattering
events between two materials by considering energy conser-
vation in individual phonon scattering events. This model
provides a much more physical development of the effects of
inelastic scattering on �K than previous models that account
for inelastic scattering. The model developed in this paper in
addition to the evidence in the experimental and MDS trends
will give a clear picture of how inelastic phonon scattering
contributes to �K, and will further support the theory that
inelastic phonon scattering adds an additional channel to �K

instead of electron-interface scattering processes.
The model developed in this work makes three basic

assumptions: �1� each solid adjacent to the interface can be
described with an isotropic Debye dispersion; �2� phonon
scattering at the interface is diffuse, that is, the scattered
mode loses all memory of polarization and incident angle
simplifying the problem to essentially just a conservation of
energy consideration; and �3� the material designated as side
1 has a smaller vibrational spectra and lower speed of sound
than the material designated as side 2 �i.e., side 1 is the
“softer” material and side 2 is the “stiffer” material�. The
consequences and potential error associated with these as-
sumptions will be addressed in Sec. II. In addition, Sec. II
will present the derivation of the DMM and analyze the con-
sequences of assuming elastic phonon scattering. Section III
will walk through the development of the inelastic scattering
transmission coefficients, and compare this inelastic scatter-
ing transmission model to previous models for elastic and
inelastic phonon scattering. Finally, Sec. IV will compare
thermal boundary conductance calculations using the models
for elastic and inelastic transmission coefficients to experi-
mental data. This new model that takes into account inelastic
scattering by considering multiple phonon processes in inter-
face transmission shows excellent agreement with experi-
mental data on acoustically mismatched samples where in-
elastic scattering was previously only assumed to dominate
�K.

II. THE DMM AND ELASTIC SCATTERING

Thermal boundary conductance calculations begin by
considering an incident flux of phonons impinging on an
interface. Using the equation of phonon radiative transfer,
the phonon heat flux can be calculated by

Q1 = �
j
�

�=4�
�

�c,1,j

�I1,j�z,t,�,v,��d�d� , �1�

where � is the cosine of the angle between the phonon
propagation direction and the z-direction ���, � is the solid
angle, I is the directional spectral intensity of phonons per
unit area, z and t are the position and time of the phonons,
respectively, � is the phonon frequency, �c is the cutoff fre-
quency, and j represents the phonon polarization in which I
is summed over all polarization modes. To account for the
heat flux across the interface, Eq. �1� is multiplied by a pho-
non transmission coefficient, ��z , t ,� ,v ,��, and related to
�K via
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�K =
�

�T��
j
�

�=4�
�

�c,1,j

�
�

�I1,j�z,t,�,v,���12

	�z,t,�,v,��d�d�d�� . �2�

As stated in Sec. II, the analysis in this paper will assume
that phonons are scattered diffusely. Since this paper focuses
on the effects of inelastic scattering on �K, a phenomenon
that is observed at relatively high temperatures in experimen-
tal studies, this diffuse scattering assumption is valid due to
the thermal wavelength of the phonon system at these tem-
peratures compared to characteristic scattering scales at the
interface. The representative wavelength of the phonon flux
approaching the interface can be estimated by the thermal
coherence length, L, which can be thought of the spatial
extent of the phonon wavepacket.34 The coherence length for
each phonon polarization, given by Lj =hv j /kBT, where h is
Planck’s constant, v is the phonon velocity, and kB is Boltz-
mann’s constant, is related to the degree of specularity of the
phonon scattering event via35

p = exp�−
16�2
rms

2

Lj
� , �3�

where p is the specularity parameter, which estimates the
probability that phonons are specularly scattered, and 
rms is
the asperity parameter of the interface �mean square devia-
tion of the height of the surface from the reference plane�. It
is apparent that as the product 
rmsT increases, the probabil-
ity of diffuse scattering increases. Also, as the velocity of the
phonons in a crystal increases, the probability of diffuse scat-
tering decreases. As previously mentioned, evidence of in-
elastic scattering has been reported at relatively high tem-
peratures �T�50 K�. Diamond, having one of the highest
phonon velocities of any pure materials �longitudinal veloc-
ity of 17 500 m s−1�,36 would therefore be the most likely to
experience specular phonon scattering at an interface. Con-
sider diamond phonons approaching an interface at 50 K
with only 1 ML �monolayer� of roughness �lattice constant of
diamond is approximately 0.357 nm�.27 Using Eq. �3�,
phonons have less than a 3.5% probability of scattering
specularly, with the probability decreasing to 0.1% by 100 K.
Therefore, for material systems and temperatures of interest
in this work, diffuse phonon scattering is a valid assumption.

By assuming diffuse phonon scattering at the interface,
the transmission coefficient in Eq. �2� can be estimated under
equilibrium conditions. First, since diffuse scattering means
that the scattered phonon has no memory of the mode or
frequency from which it originated before the scattering
event, the transmitted phonon flux and transmission coeffi-
cient are no longer directionally dependent, and can therefore
be estimated as isotropic, so Eq. �2� becomes

�K =
�

�T��
j
�

�c,1,j

�I1,j��,v,T��12��,T�d�� , �4�

where I1,j�z , t ,� ,v ,�� has been replaced with the expression
for the isotropic equilibrium intensity, I1,j�� ,v ,T�, at the
equivalent interface temperature. Since the interface scatters

phonons diffusely, the interface can be treated as a com-
pletely thermalizing �black� boundary, so the intensity can be
described as I1,j�� ,v ,T�=��v jNj�� ,T� /4�, where � is
modified Planck’s constant and Nj�� ,T� is the number of
phonons at a given frequency, temperature, and polarization
per unit volume. Nj�� ,T� can be calculated by Nj�� ,T�
=gj���f0�� ,T�, where gj��� is the phonon density of states
and f0�� ,T� is the Bose–Einstein distribution function. In
essence, Eq. �4� is the DMM in its most general form.

Recognizing that, by the nature of diffuse scattering,
�12�� ,T�+r12�� ,T�=1 and r12�� ,T�=�21�� ,T�, where
r12�� ,T� is the phonon reflection coefficient, then reciprocity
requires that �21�� ,T�=1−�12�� ,T�. Applying detailed bal-
ance on the phonon flux approaching the interface in each
material yields

�
j
�

�c,1,j

��v1,jg1,j���f0��,T��12��,T�d�

= �
j
�

�c,2,j

��v2,jg2,j���f0��,T��1 − �12��,T��d� .

�5�

Note that in Eq. �5�, the transmission coefficient is a function
of the phonon frequency, and the integrations are prescribed
over the entire phonon spectrum in each material. At this
point, to calculate the transmission coefficient, assumptions
about energy conservation and the phonon scattering mecha-
nisms at the interface must be made.

Assuming elastic scattering, since one phonon can only
transfer energy to one other phonon with the same energy, no
phonons with frequencies above �c,1 can participate in �K,
so Eq. �5� becomes

�12
�2� =

� j
v2,jg2,j���

� j
v1,jg1,j��� + � j

v2,jg2,j���
, �6�

where the superscript �2� denotes that only two phonons are
participating in this scattering event, and hence this is the
elastic transmission coefficient. Assuming a Debye density
of states, that is, gj���=�2 /2�2v j

3, Eq. �6� reduces to the
familiar elastic transmission coefficient often associated with
the DMM, given by

�12
�2� =

� j
v2,j

−2

�� j
v1,j

−2 + � j
v2,j

−2�
. �7�

Examining the opposite limit, assuming that all phonons
of all frequencies in each material will transmit energy
across the interface, Eq. �5� can be rewritten to determine the
transmission coefficient as
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�12�T� =

� j �
�c,2,j

��v2,jg2,j���f0��,T�d�

� j �
�c,1,j

��v1,jg1,j���f0��,T�d� + � j �
�c,2,j

��v2,jg2,j���f0��,T�d�

, �8�

which, assuming a constant phonon velocity across the entire
Brillouin zone �i.e., Debye�, Eq. �8� is rewritten into the form
similar to that derived by Chen29 and Dames and Chen30

given by

�12�T� =
� j

v2,jU2,j�T�

� j
v1,jU1,j�T� + � j

v2,jU2,j�T�
, �9�

where U is the internal energy of the phonon system. Note in
this transmission coefficient derivation, energy conservation
in individual scattering events is not considered since the
entire phonon population in a given side is governed by one
transmission probability at a given temperature. This devel-
opment does not specifically consider the energy conserving
processes of a high frequency phonon in side 2 breaking
down into several lower frequency phonons in side 1, which
is the fundamental multiple phonon interfacial process con-
tributing to inelastic scattering during �K.

Assuming a Debye dispersion gives rise to Eqs. �7� and
�9� and makes transmission a trivial calculation when assum-
ing elastic scattering. The Debye assumption has its limita-
tions, especially in relatively high temperature studies where
phonons are excited close to the zone boundary and the
change in � is no longer linear with the change in wavevec-
tor, q� . In this case, the phonon group velocity is no longer
constant and varies with �, and the density of states no
longer takes the compact Debye form. Therefore, since the
phonon group velocity vanishes at the zone edge, the Debye
assumption should cause an overestimate in �K. In fact, us-
ing a real dispersion in transmission and �K calculations
makes the predictions of �K larger at lower temperatures
�T�D�, reach a constant value at temperatures lower than
the Debye predictions, and predict a slightly lower �K in the
classical limit.17 Experimental data clearly dominated by in-
elastic scattering are in temperature regimes where a Debye
approximation predicts a constant �K; therefore, the use of
the real dispersion would give the same trend. In heavily
acoustically mismatched samples �e.g., Pb/diamond and Bi/
diamond�, the DMM predictions are almost an order of mag-
nitude less than the experimental data, so the slight change
due to using a real dispersion will not affect the results. In
addition, for a range of acoustically mismatched samples that
will be analyzed in this work �Pb/diamond, Bi/diamond, Au/
diamond, and Pt/AlN�, using the Debye model with elastic
scattering assumptions has shown to give a reliable estima-
tion of the contribution of elastic scattering to �K.33 There-
fore, the specific results and calculations in Secs. III and IV
will use assume a Debye dispersion. This allows the cutoff
frequency can be calculated by �c,1,j =v1,j�6�2N1�1/3, where

N1 is the total number of oscillators per until volume of side
1.27 In cubic structures �such as metal with one atom per unit
cell�, N1 is simply the atomic density, calculated by N1

=�NA /M, where � is the mass density, NA is Avogadro’s
number, and M is the atomic weight. However, in structures
with more than one atom per unit cell �for example, diamond
structures with diatomic basis such as Si or diamond�, the
number of primitive cells per unit volume must be divided
by the number of atoms in the basis.30 Therefore, for a di-
atomic basis, N1=�NA /2M.

III. INELASTIC SCATTERING AND INTERFACIAL
TRANSMISSON

Consider Eq. �5�, which exploits detailed balance on the
phonon flux at the interface in the event of diffuse scattering.
Taking into account energy conservation in multiple phonon
processes, or an n phonon process where n is any integer,
then a phonon of frequency �n−1�� can break down into n
−1 phonons of frequency �. An example of a three phonon
process is then modeled as a phonon of frequency 2� break-
ing down into two phonons of frequency �. �Note that a
more general three phonon processes could be described as a
phonon of frequency �1 breaking down into two phonons of
frequencies �2 and �3, where �1=�2+�3; however, in an
effort to develop a closed form analytical model to describe
this anharmonic process, only the process of a high fre-
quency phonon breaking down into two equal low frequency
phonons will be discussed since the �1=�2+�3 situation
would involved detailed probabilistic simulations and would
not result in the closed form model that is sought in this
work.� Detailed balance is then invoked on all three phonon
process at the interface, which gives

�
j

2����v1,j�g1,j����f0��,T��12
�3���,T�

= �
j

��2��v2,jg2,j�2��f0�2�,T��1 − �12
�3���,T�� , �10�

where the superscript �3� on �12
�3��� ,T� refers to the number

of phonons participating in interface transmission. Equation
�10� can be simplified with a Debye assumption, yielding
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�
j

2��
�2

2�2v1,j
2

1

exp� ��

kBT
� − 1

�12
�3���,T� = �

j

2��
4�2

2�2v2,j
2

1

exp�2��

kBT
� − 1

�1 − �12
�3���,T�� . �11�

So that the transmission coefficient for a phonon of frequency � undergoing a three phonon, energy conserving, scattering
process at the interface is given by

�12
�3���,T� =

�
j

4

v2,j
2 	exp�2��

kBT
� − 1


�
j

1

v1,j
2 	exp� ��

kBT
� − 1
 + �

j

4

v2,j
2 	exp�2��

kBT
� − 1


, �12�

where Eq. �12� can now be used in Eq. �4� to determine �K in the event that only three phonon processes are contributing to
interfacial transport. Since Eq. �12� represents a transmission probability assuming all phonons are undergoing three phonon
processes, this ignores the effect of elastic scattering. Assuming a perfect interface where phonons only undergo one scattering
event, they can either lose energy by scattering with one phonon of the same energy �elastic�, or through a three phonon
process �inelastic�, or four phonon process �inelastic�, etc. Therefore, although Eq. �12� considers the three phonon process, it
does not account for phonons that have already been scattered via elastic processes. The number of phonons that have
undergone elastic processes in side 1 and side 2 are �12

�2�gj���f0�� ,T� and �1−�12
�2��gj���f0�� ,T�, respectively, where �12

�2� is the
elastic transmission coefficient �two phonons� given by Eq. �7�. Therefore, detailed balance on the remaining phonons under-
going three phonon scattering yields

2����v1,j�g1,j����f0��,T��1 − �12
�2���12,j

�3� ��,T� = ��2��v2,jg2,j�2��f0�2�,T��12
�2��1 − �12

�3���,T�� , �13�

when 0���c,1,j /2 and

2����v1,j�g1,j����f0��,T��1 − �12
�2���12,j

�3� ��,T� = ��2��v2,jg2,j�2��f0�2�,T��1 − �12,j
�3� ��,T�� , �14�

when �c,1,j /2���c,1,j. Note that now the three phonon transmission coefficient is mode dependent due to the number of
conservation since the longitudinal and transverse branches have different cutoff frequencies. With the Debye assumption, Eqs.
�13� and �14� yield a three phonon transmission coefficient of

�12,j
�3� ��,T� =

4�12
�2�

v2,j
2 	exp�2��

kBT
� − 1


�1 − �12
�2��

v1,j
2 	exp� ��

kBT
� − 1
 +

4�12
�2�

v2,j
2 	exp�2��

kBT
� − 1


, �15�

when 0���c,1,j /2 and

�12,j
�3� ��,T� =

4

v2,j
2 	exp�2��

kBT
� − 1


�1 − �12
�2��

v1,j
2 	exp� ��

kBT
� − 1
 +

4

v2,j
2 	exp�2��

kBT
� − 1


, �16�

when �c,1,j /2���c,1,j. This approach assumes that elastic scattering is more probable than three phonon scattering, which
is more probably than four phonon scattering, etc. This is true for anharmonic decay of optical phonons.37 Therefore, for any
n phonon process, the transmission coefficient will be separated into n−1 intervals due to phonon conservation to take into
account the more probable n−1 phonon scattering processes. For any n phonon inelastic process �n�2�, the transmission
coefficient is defined as
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�n − 1�2�
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�x+2�
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kBT
� − 1


�
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n−3
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�x+2��
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kBT
� − 1
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�12
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� − 1
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�12,j
n ��,T� =

�n − 1�2

v2,j
2 	exp� �n − 1���

kBT
� − 1


�
x=0

n−3

�1 − �12
�x+2��

v1,j
2 	exp� ��

kBT
� − 1
 +

�n − 1�2

v2,j
2 	exp� �n − 1���

kBT
� − 1


,
�n − 2��c,j

�n − 1�
 �  �c,j , �17�

where nmax the maximum n for an interface, that is, the maxi-
mum number of phonons that a high frequency side 2 pho-
non can break down into by scattering and transmitting en-
ergy to side 1 phonons, which can be estimated by nmax

=floor��c,2,j /�c,1,j�+1, where “floor” is the floor function.
Figure 1 shows the longitudinal and transverse three and four
phonon transmission coefficients as a function of frequency
at 100 and 300 K for Pb/diamond. These values are normal-
ized by the elastic transmission coefficient, �12

�2�. Pb/diamond
shows evidence of inelastic scattering,6,7 and its Debye tem-
perature ratio, which quantifies the acoustic mismatch of the
interface, is 0.047. Note that by the estimation for nmax, the
longitudinal and transverse branches of Pb/diamond can
theoretically participate in 11 and 19 phonon processes, re-
spectively. As seen in Fig. 1, three phonon processes, �12

�3�, do
not contribute significantly to energy transfer processes at
low frequencies ����c,1,j /2�, showing less than 4% of �12

�2�

in the longitudinal transmission and about 1% of �12
�2� in the

transverse transmission. However, above �c,1,j /2, where the
side 2 phonons participating in the three phonon processes
have not already elastically scattered, the transmission prob-

ability increases to that of or above �12
�2�. The transmission

increases as the temperature increases due to more phonons
in side 2 �diamond� being able to participate in energy trans-
mission and three phonon processes. Similar trends in fre-
quency and temperature are predicted in �12

�4�: negligible
transmission when ���c,1,j /3, an increase in transmission
when �c,1,j /3�2�c,1,j /3 which is still less than �12

�3�, and
then when 2�c,1,j /3��c,1,j, the predicted �12

�4� transmission
is greater than both �12

�2� and �12
�3�. Similar trends continue

with higher order phonon processes �i.e., 5, 6, and n phonon
processes�. Section IV will consider the effects of these
transmission processes on �K.

IV. MODELING INELASTIC SCATTERING IN THERMAL
BOUNDARY CONDUCTANCE

Since the elastic and inelastic channels of �K can be
modeled as parallel resistors,26,33 the elastic and inelastic
portions of the phonon intensity, I, are additive. Since I
across the interface is simply the transmission coefficient
multiplied by I, then the total transmission during elastic and
n phonon inelastic processes is simply �12�� ,T�=�n=2

nmax�12
�n�
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	�� ,T�. Therefore, taking into account multiple phonon in-
elastic scattering, thermal boundary conductance can be cal-
culated by

�K =
�

�T��
j
�

�c,1,j

�I1,j��,v,T� �
n=2

nmax

�12
�n�d�� , �18�

or, assuming a Debye dispersion,

�K =
�2

8�2kBT2�
j

1

v1,j
2 �

�c,1,j

�4

exp� ��

kBT
�

	exp� ��

kBT
� − 1
2

	 �
n=2

nmax

�12
�n�d� , �19�

where �12
�2� is calculated by Eq. �7� and �12

�n� when n�2 is
calculated by Eq. �17�. Since the phonon intensities are ad-
ditive, Eq. �19� can be recast as

�K = �
n=2

nmax

�K
�n�, �20�

where �K
�n� represents the thermal boundary conductance due

to n phonon scattering processes. Note that Eq. �20� requires
no fitting parameters, only knowledge of the phonon velocity
and oscillator density in the two materials adjacent to the
interface. Using Eq. �20�, the contributions of two phonon
�elastic�, and three and four phonon �inelastic� processes to
thermal boundary conductance are calculated and shown in
Fig. 2 for a Pb/diamond interface. Also shown in Fig. 2 are
�K measurements of Pb films on hydrogen-terminated dia-
mond substrates �Pb/H/diamond�.7 Note that the effects of
hydrogen termination could have reduced the amount of Pb/
diamond mixing during deposition38 and therefore poten-

tially represent a “cleaner” more abrupt interface than
nonhydrogen-terminated samples. This simplifies the theory
since �K predictions do not have to incorporate a mixing
region at the interface creating phonon attenuation.19,20 The
two phonon �elastic� calculation, �K

�2�, which is the tradition-
ally used DMM, significantly underpredicts the data and pre-
dicts a constant �K above �100 K �a Debye temperature of
Pb �105 K�.27 The three phonon process contribution to
thermal boundary conductance, �K

�3�, continues to increase
above the Debye temperature since the high frequency
phonons in the diamond substrate that are participating in �K

3

are being quantum mechanically populated up to the Debye
temperature of diamond ��2230 K�.27 A similar trend is ob-
served in the four phonon process contribution to thermal
boundary conductance, �K

�4�. The total predicted thermal
boundary conductance shows excellent agreement in value
and trend to the measured Pb/H/diamond thermal boundary
conductance, indicating that multiple phonon inelastic scat-
tering is being observed in the experimental data. Note that
the contribution of �K

�4� compared to the overall predicted
thermal boundary conductance, �K=�K

�2�+�K
�3�+�K

�4�, is less
than 10% at the temperatures of interest. Therefore, three
phonon processes are dominating thermal boundary conduc-
tance. This was qualitatively inferred by Hopkins et al.6 and
Lyeo and Cahill.7 Due to the relatively low contribution of
four phonon processes to the overall �K, higher order phonon
processes are not considered in the remainder of this analysis
since the contribution of these processes are less than that of
�K

�4�.
Figure 3 shows the same calculations as Fig. 2 for Bi/H/

diamond, Au/diamond, Pt /Al2O3, and Pt/AlN interfaces.
Again, taking into account three and four phonon processes
in Bi/diamond and Au/diamond give much better agreement
in values and trends of the predicted �K. These two samples
are heavily mismatched, and the calculations of the elastic

FIG. 1. �Color online� Three and four phonon transmission probabilities for
Pb/diamond interfaces using Eq. �17�. The data are normalized by the elastic
scattering transmission probability, �12

�2�, given in Eq. �7�. The contributions
of the multiphonon processes to energy transmission increases with tem-
perature even though the temperatures in the calculations are above the
Debye temperature of Pb ��100 K� �Ref. 27� since the diamond phonon
population is changing based on the Bose–Einstein distribution below the
Debye temperature �Debye temperature of diamond �2230 K� �Ref. 27�.
Also, note that higher frequency Pb phonons contribute more to higher order
phonon processes since higher frequency diamond phonons are required as
the order of the phonon process increases.

FIG. 2. �Color online� The total predicted thermal boundary conductance,
�K=�K

�2�+�K
�3�+�K

�4�, at a Pb/diamond interface taking into account contribu-
tions from elastic scattering, �K

�2��DMM�, inelastic three phonon scattering,
�K

�3�, and inelastic four phonon scattering, �K
�4�. The contributions from each

of the elastic and inelastic scattering processes to �K are also shown in
addition to Pb/H/diamond data from Lyeo and Cahill �Ref. 7�. Taking into
account three and four phonon process in thermal boundary conductance
calculations shows excellent agreement to the experimental data, a signifi-
cant improvement compared to predictions with the DMM assuming elastic
scattering, �K

�2��DMM�.
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transmission coefficient calculated with the DMM gives a
good estimation of the elastic scattering contribution.33 How-
ever, as the samples become less heavily mismatched �i.e.,
more acoustically similar�, the assumptions governing the
elastic transmission coefficient fail. In the Pt samples, taking
into account three and four phonon processes causes an over-
prediction of the calculations compared to the data. Note,
however, that the trend in inelastic total thermal boundary
conductance matches that of the experimental data. Remem-
ber, the increasing trend of �K above one materials’ Debye
temperature is the original evidence of inelastic scattering
from MDS.25,26 All of the predictions of �K using three or
three and four phonon processes capture this trend. For ex-
ample, the slope of the Pt /Al2O3 data is 0.22 MW m−2 K−2

over 300–500 K. Over this temperature range, the DMM
predicts a slope of about 0.03 MW m−2 K−2, which is about
ten times lower than the experimentally measured slope.
However, the model taking into account three and four pho-
non processes predict a slope of 0.63 MW m−2 K−2, which is
of the same order of magnitude �about three times larger� as
the slope observed in the experiments, thus quantifying the
improvement in �K predictions that take into account inelas-
tic processes over the DMM predictions. This improvement
is more obvious in the more heavily mismatched samples
shown in Figs. 2 and 3.

The model developed in this paper takes into account a
high frequency phonon breaking down into multiple lower
frequency phonons of the same frequency. Although phonons
are not required to break down into multiple phonons of the
same frequency, this assumption allows for the development
of a closed form, analytical model taking into account inelas-
tic scattering at solid interfaces. High level computer simu-
lations such as molecular dynamics and wave packet analy-
ses can elucidate more physics into multiple phonon

interfacial processes.26,39 In addition, this model assumes that
if there is energy for a multiple phonon process to occur, then
it will occur. However, the interfacial scattering probabilities
have never been studied, and without probabilistic simula-
tions such as Monte Carlo or specific experimental data on
phonon lifetimes at interfaces, there is no way to know what
specific interfacial phonon events are allowed or not allowed.

In conclusion, a new model is developed that accounts
for inelastic scattering in thermal boundary conductance. By
taking into account conservation of energy and phonon popu-
lation, the decay of a high frequency phonon into several
lower frequency phonons can be specifically modeled, and
assuming diffuse scattering at the interface, the transmission
probability can be explicitly calculated. Using this new form
of transmission probability that takes into account inelastic
phonon scattering processes at the interface, better agreement
in values and trends between thermal boundary conductance
calculations and experimental data is observed as opposed to
the agreement observed between traditional DMM calcula-
tions that only assume elastic scattering. The power of this
new model lies in the fact that there are no fitting parameters,
all that is necessary for prediction of the various inelastic
phonon scattering events is knowledge of the phonon veloc-
ity and oscillator density in both materials. This model and
the analysis in this paper show that inelastic phonon scatter-
ing dominates thermal boundary conductance in acoustically
mismatched samples, with the most significant contribution
coming from three phonon process.
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