Measuring the Thermal Conductivity of Porous, Transparent SiO₂ Films With Time Domain Thermoreflectance

Nanocomposites offer unique capabilities of controlling thermal transport through the manipulation of various structural aspects of the material. However, measurements of the thermal properties of these composites are often difficult, especially porous nanomaterials. Optical measurements of these properties, although ideal due to the noncontact nature, are challenging due to the large surface variability of nanoporous structures. In this work, we use a vector-based thermal algorithm to solve for the temperature change and heat transfer in which a thin film subjected to a modulated heat source is sandwiched between two thermally conductive pathways. We validate our solution with time domain thermoreflectance measurements on glass slides and extend the thermal conductivity measurements to SiO₂-based nanostructured films. [DOI: 10.1115/1.4003548]

Keywords: time domain thermoreflectance, thermal conductivity, differential-effective medium theory, porous SiO₂

1 Introduction

Nanocomposites offer unique capabilities of controlling thermal transport through the manipulation of various structural aspects of the material [1]. Porous micro- and nanocomposite materials have been of recent interest due to the strong boundary scattering effects, causing a controlled reduction in the thermal conductivity [2–7]. This reduction has resulted in amorphous porous nanomaterials exhibiting thermal conductivities lower than the theoretical minimum [6]. With continued reduction in characteristic lengths of materials systems of interest, measurement of these porous composite materials will become more difficult. For example, the 3ω technique [8], which is a contact-based resistive thermometry method of determining the thermal conductivity κ, typically operates at heating event modulation frequencies where the penetration depth of the thermal wave would exceed the thickness of the thin film of interest [9] (the thermal penetration depth of a modulated heat source is given by \(d = \sqrt{2D/\omega}\), where \(D\) is the thermal diffusivity, defined as \(D = k/C\), where \(C\) is the heat capacity, and \(\omega\) is the angular frequency of the modulated heating event defined as \(\omega = 2\pi f\), where \(f\) is the modulation frequency). This can cause interference from underlying substrate materials [10], and various correction factors must be employed to account for thermal confinement and spreading in the film [11]. Optical, noncontact meth-
ods, such as short pulsed, pump-probe thermoreflectance ([or time domain thermoreflectance (TDTR)] [12,13], have been used to measure κ in a wide array of nanoscale films and composite systems [7,14–23]. Typical operation frequencies of TDTR measurements are in the 1–10 MHz regime, which ensures higher spatial resolution compared with the contact-based resistive thermometry approaches previously discussed. However, the optical nature of these thermoreflectance techniques requires an optically flat, smooth, reflective surface to accurately measure the reflectivity and the subsequent thermal properties, which is difficult to achieve in many porous and amorphous nanocomposites. Recently, Ge et al. [23] and Schmidt et al. [20] used TDTR to measure the thermal conductivity of samples using a slightly different sample geometry than traditionally employed. In these works, the samples of interest were placed on a glass substrate coated with a thin metal film. The pump and probe laser pulses were reflected by the metal transducer through the glass, and the change in the TDTR signal was used to deduce the thermal conductivity of the adjacent liquid. The sample geometry probed by the work of Ge et al. and Schmidt et al. is shown in Fig. 1.

In this work, we solve the heat conduction equation in a multilayer stack of materials with a modulated source at any location in the multilayer stack. This approach, which is based on Feldman’s algorithm [24], can account for bidirectional heat transfer to model heat transfer after modulated laser heating in the event that spatial location of the heat event cannot be considered as semi-insulative. In the next section, we derive a solution to the heat equation in the frequency domain accounting for bidirectional heat transfer. We also show the frequency regime where one-dimensional heat transfer will dominate the thermal processes in a multilayer stack. We validate our solution with TDTR measurements on glass slides and extend the thermal conductivity measurements to porous SiO$_2$-based nanostructured films. We measure the thermal conductivity of two different types of SiO$_2$ films. One type of film is nanoporous while the other type is comprised of close-packed SiO$_2$ spherical particles. These two films, along with previous data, allow us to evaluate a well known theory for thermal transport in effective media. We describe the sample fabrication and other experimental considerations in Sec. 3 and discuss the results from our thermal analysis on the SiO$_2$-based nanostructures in Sec. 4.

2 Thermal Model

The recent work by Schmidt et al. [20] discussed in detail how to apply Carslaw and Jaeger’s thermal algorithm for heat transfer in a composite slab [25] to the sample geometry shown in Fig. 1. This algorithm accounts for bidirectional heat transfer through simultaneous solution of two thermal matrices describing the heat transfer from a modulated heat source. However, Feldman’s [24] algorithm to solve the heat diffusion equation for a general multilayer stack subjected to a modulated heat source can also be used to solve this geometry. Feldman’s algorithm also easily incorporates the thermal boundary conductance h at each material interface [26]. In the remainder of this section, we use Feldman’s development to solve for the temperature change in a composite slab in which a modulated source is deposited in a material sandwiched between two other conductive materials. From this, we derive an explicit solution for the temperature change at one side of the sandwiched material. This provides a useful temperature solution for future studies involving modulated thermal sources imparted in buried nanosystems.

The approach in Feldman’s treatment is to define vector components of counterpropagating thermal waves in each layer of the multilayer system to solve for the temperature immediately adjacent on either side of the heat source. We consider the nomenclature and geometry shown in Fig. 1, where the interface number z corresponds to the interface to the left of the material layer N. We assume that $N=0$ and 2 are semi-infinite, which is valid for typical time scales and modulation frequencies in TDTR (this will be addressed in more detail later). In the remainder of this section, we will derive the vector-based algorithm to treat modulated heat transfer in the composite slab geometry shown in Fig. 1.

Let us begin by considering a slab of material. The solution to the temperature distribution in material N can be expressed as the sum of exponential terms representing thermal waves traveling in the $+x$ and $-x$ directions given by

$$T(x) = T_N \exp[q_N x] + T_0 \exp[-q_N x]$$ (1)

where T_N and T_0 are complex constants representing the temperature above ambient. The thermal wave vector q_N is determined from the solution to the heat equation and depends on the dimensionality considered during thermal transport. As discussed by Hopkins et al. [27], the axially symmetric and one-dimensional heat equations can be applied to TDTR experiments depending on the modulation frequency. Therefore, the temperature above ambient can be treated as a two-dimensional vector expressed as

$$\tilde{T} = \begin{bmatrix} T_N(x) \\ T_0(x) \end{bmatrix}$$ (2)

where the vector components correspond to the first and second terms in Eq. (1). Given a material of thickness d and referring to Fig. 1, the temperature at the left end ($x=0$) is related to the temperature at the right end ($x=d$) by

$$\begin{bmatrix} T_N(0) \\ T_0(0) \end{bmatrix} = \begin{bmatrix} \exp[-q_N d] & 0 \\ 0 & \exp[q_N d] \end{bmatrix} \begin{bmatrix} T_N(d) \\ T_0(d) \end{bmatrix}$$ (3)

Again, referring to Fig. 1, the temperature to the left of some interface $z=N+1$ in layer material N is related to the temperature to the right of that interface in material $N+1$ by

$$T_N(d_N) = \frac{1}{2} \left[\begin{bmatrix} 1 + \frac{\gamma_N}{h_{z=N+1}} & \frac{\gamma_N}{h_{z=N+1}} & -\frac{\gamma_N}{h_{z=N+1}} & 1 + \frac{\gamma_N}{h_{z=N+1}} \\ \frac{\gamma_N}{h_{z=N+1}} & \gamma_N & \gamma_N & \frac{\gamma_N}{h_{z=N+1}} \\ -\frac{\gamma_N}{h_{z=N+1}} & \gamma_N & \gamma_N & \frac{\gamma_N}{h_{z=N+1}} \\ 1 + \frac{\gamma_N}{h_{z=N+1}} & \frac{\gamma_N}{h_{z=N+1}} & -\frac{\gamma_N}{h_{z=N+1}} & 1 + \frac{\gamma_N}{h_{z=N+1}} \end{bmatrix} \right] \begin{bmatrix} T_{N+1}(0) \\ T_N(0) \end{bmatrix}$$ (4)

where $\gamma_N = \kappa_N q_N$. Equations (3) and (4) give the heat transfer...
through a given material and across an interface of two materials. However, boundary conditions must be imposed.

We will now switch to notation specific to the geometry in Fig. 1. As previously mentioned for the thermal transport problem in this work, we assume that layers 0 and 2 are semi-infinite and the modulated heat source is deposited on the surface of the metal film (layer 1). Therefore, we choose

$$\begin{bmatrix} T_0' (0) \\ T_0' (0) \end{bmatrix} = T_0 (x = 0) \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

(5)

and

$$\begin{bmatrix} T_2' (0) \\ T_2' (0) \end{bmatrix} = T_2 (x = d) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

(6)

which ensures that \(T (\pm \infty) = 0 \). The temperature just to the left of the heat source is obtained by successively applying Eqs. (3) and (4) to Eq. (5), and this temperature is described by

$$\begin{bmatrix} T_1' (0^+) \\ T_1' (0^-) \end{bmatrix} = T_0 (x = 0) \begin{bmatrix} A^+ \\ A^- \end{bmatrix}$$

(7)

where \(A^+ \) and \(A^- \) are the components of a vector \(\vec{A} \) given by

$$\vec{A} = \frac{1}{2} \begin{bmatrix} 1 + \frac{\gamma_0 - \gamma_0}{\gamma_1} & 1 - \frac{\gamma_0 + \gamma_0}{\gamma_1} & \exp[q_d d_0] & 0 \\ 0 & \exp[q_d d_0] & 1 - \frac{\gamma_0}{\gamma_1} & \frac{\gamma_2}{\gamma_1} \end{bmatrix}$$

(8)

Similarly, the temperature just to the right of the heat source is obtained by successively applying Eqs. (3) and (4) to Eq. (6), and this temperature is described by

$$\begin{bmatrix} T_1' (0^+) \\ T_1' (0^-) \end{bmatrix} = T_2 (x = d) \begin{bmatrix} B^+ \\ B^- \end{bmatrix}$$

(9)

where \(B^+ \) and \(B^- \) are the components of a vector \(\vec{B} \) given by

$$\vec{B} = \frac{1}{2} \begin{bmatrix} 1 + \frac{\gamma_0 - \gamma_0}{\gamma_1} & 1 - \frac{\gamma_0 + \gamma_0}{\gamma_1} & \exp[-q_d d_1] & 0 \\ 0 & \exp[-q_d d_1] & 1 - \frac{\gamma_0}{\gamma_1} & \frac{\gamma_2}{\gamma_1} \end{bmatrix}$$

(10)

From Feldman’s solution [24], we know that

$$T_0 (x = 0) = \frac{1}{2 \gamma_1 A^+ A^- - A^+ B^+}$$

(11)

and

$$T_2 (x = d) = \frac{1}{2 \gamma_1 A^+ A^- - A^- B^-}$$

(12)

Note that if dealing with an insulated metal film surface, such as in a more traditional TDTR sample configuration, \(A^+ = A^- = 1/2 \), and Eq. (11) gives the temperature change on the surface of the metal film [13]. However, in the case considered in Fig. 1, we are interested in \(T_1 (x = 0) \), which can be determined with Eq. (11) and either by using Eq. (11) in Eq. (7) or Eq. (12) in Eq. (9). For example, plugging Eq. (11) into Eq. (7) gives

$$\begin{bmatrix} T_1' (0^+) \\ T_1' (0^-) \end{bmatrix} = T_0 (x = 0) \begin{bmatrix} 1 & B^+ + B^- \\ 2 \gamma_1 A^+ A^- - A^+ B^+ \end{bmatrix} A^+$$

(13)

and with Eq. (1), we obtain the temperature at the surface of the metal film given by

$$T_1 (x = 0) = T_1' (0^+) + T_1' (0^-)$$

(14)

Similarly, as a check, we can perform the operation using Eq. (12) with Eq. (9), yielding

$$\begin{bmatrix} T_1' (0^+) \\ T_1' (0^-) \end{bmatrix} = \frac{1}{2 \gamma_1 A^+ B^- - A^- B^-} B^-$$

(15)

which leads to

$$T_1 (x = 0) = T_1 (0^+) + T_1 (0^-)$$

(16)

This makes sense as this implies that \(T_1 (0^+) = T_1 (0^-) \) and \(T_1 (0^+) = T_1 (0^-) \), which is necessary for continuity.

To calculate the temperature rise on the surface of the metal film, the thermal wave vector in each layer \(q_N \) must be determined. As previously discussed, \(q_N \) is determined from the solution to the heat equation and depends on the dimensionality considered during thermal transport. Assuming isotropic media in the individual layers, the thermal wave vectors are given by [27]

$$q_N^2 = k^2 + \frac{iC_s \omega}{\kappa_N}$$

(17)

for the axially symmetric model, where \(k \) is the Hankel transform variable. As previously mentioned, \(\omega \) is the angular frequency of the modulated heating event defined as \(\omega = 2 \pi f \), where \(f \) is the modulation frequency. For the one-dimensional model,

$$q_{N,1D}^2 = \frac{iC_s \omega}{\kappa_N}$$

(18)

The temperature rise at the surface of the confined metal film detected by a probe pulse of radius \(w_{pr} \) due to the excitation of a pump pulse with absorbed power \(a \) and radius \(w_{pm} \) is calculated by convoluting Eq. (14) (or Eq. (16)) with the pump beam distribution then averaging over the probe beam distribution. This leads to the predicted temperature rise in the frequency domain during pump-probe experiments using the axially symmetric model [13,22]

$$\theta_{Ax} = \frac{a}{2 \pi w_{pm}^2} \int_0^\infty T_1 (x = 0) \exp \left\{ -\frac{k^2 (w_{pr}^2 + w_{pm}^2)}{8} \right\} \frac{k^2 (w_{pr}^2 + w_{pm}^2)}{8} dk$$

(19)

and that of the one-dimensional model of [27]

$$\theta_{1D} = \frac{aw_{pr}^2}{2 \pi w_{pm}^2} T_1 (x = 0)$$

(20)

Figure 2 shows the ratio of the absolute value of the real to imaginary solution of Eq. (19), \(\text{Re}\theta_{Ax} / \text{Im}\theta_{Ax} \), as a function of modulation frequency for five different values for the thermal diffusivity of layer 2, \(D = 10^{-7} \, m^2 \, s^{-1} \), \(10^{-6} \, m^2 \, s^{-1} \), \(10^{-5} \, m^2 \, s^{-1} \), \(10^{-4} \, m^2 \, s^{-1} \), and \(10^{-3} \, m^2 \, s^{-1} \). Assuming a heat capacity of 1 MJ m\(^{-3}\) K\(^{-1}\), this corresponds to a range of thermal conductivities of layer 2 of 0.1–1000 W m\(^{-1}\) K\(^{-1}\). We assume a sample geometry shown in Fig. 1 with a 100 nm thick Al film. For these calculations, \(h_1 \) (the thermal boundary conductance between the Al and the glass) is taken as 50 MW m\(^{-2}\) K\(^{-1}\), \(\kappa_\ell \) (the thermal conductivity of the glass) is taken as 1.4 W m\(^{-1}\) K\(^{-1}\), \(h_2 \) (the thermal boundary conductance between the Al film and layer 2) is assumed as 50 MW m\(^{-2}\) K\(^{-1}\) [20]. In reality, and as will be quantified later, the thermal conductivity of the Al film will be slightly reduced from the bulk value (we determine a thermal conductivity of an ~90 nm film as 200 W m\(^{-1}\) K\(^{-1}\)); however, the TDTR signal is nearly entirely insensitive to the thermal conductivity of the Al film over the pump-probe delay time used to determine \(\kappa \) of adjacent materials. We assume a heat capacity of glass as 1.9 MJ m\(^{-3}\) K\(^{-1}\) and that of the Al film as 2.44 MJ m\(^{-3}\) K\(^{-1}\) [28], which we will assume for the remainder of this work. In the limit of an extremely high diffusivity of layer 2, the frequency domain solution relaxes to that predicted, assum-
ing an insulated surface (i.e., layer 0 has properties of air). In this case, the thermal wave produced from the modulated heating does not see the glass on the front surface since the diffusivity of layer 2 is so much higher than that of the glass. As the diffusivity of layer 2 approaches that of the glass, the solutions converge at low frequencies.

3 Experimental Considerations

We fabricated two different types of silica-based porous films on Al films evaporated onto glass substrates to form the sample geometry similar to that shown in Fig. 1. The thicknesses of the Al films were verified with picosecond ultrasonics [29,30]. The first type of films were made from colloidal silica particles that were convectively deposited (CD) to form a microporous layer of silica of approximately 1 μm thick. These CD films were deposited on 100 nm Al film evaporated on Corning 2947 microscope slides. Convective deposition is an evaporation-driven process in which a thin film of a particle-laden solvent is dried in a controlled manner, resulting in a colloidal structure on the substrate. As the thin film evaporates, convection is induced in the bulk, and particles are drawn toward the growing colloidal structure. By varying the parameters governing the evaporation of the thin solvent film (i.e., particle concentration, solvent volatility, substrate wettability, etc.), various types of colloidal crystals can be formed [31]. In the CD film deposition, 30 ml of a 10% (by volume) particle concentration in ethanol was placed between the Al film and a second glass slide held at an angle of approximately 26 deg. The angled slide was translated relative to the stationary horizontal slide, creating a thin film of the solvent. A close-packed, single layer structure of 1 μm silica microspheres (Fuso SP-1B) was formed by moving the angled slide at v = 10 μm/s relative to the stationary substrate. We refer to these films as the CD silica films.

The other types of silica nanostructured films were fabricated by evaporation-induced self-assembly (EISA). These EISA films were fabricated on an 85 nm Al film deposited on VWR microscope glass (No. 48368040). Through the use of a monoacyl glyceride, glycerol monooleate (GMO), this EISA approach can template well-defined pore networks in silica films. In EISA, a homogeneous alcohol/water solution of a soluble silica precursor, acid catalyst, and GMO template (present at a concentration much less than where bulk mesophases appear) undergoes preferential evaporation of alcohol during film coating, thus increasing the concentration of the template and driving the self-assembly of nanostructured GMO mesophases where water is replaced by non-volatile silica. The GMO template can then be removed by either acid extraction or UV/O₃ treatment, leaving a porous silica “fossil” of the original mesophase. Interestingly, we find that the pore size distribution of the resulting porous film is dependent on which of these removal techniques is used; acid extraction yields an average pore size of about 10 nm, while UV/O₃ treatment gives an average pore size of 4 nm estimated from transmission electron microscopy (TEM) images. The total film porosity is ~30% measured via spectroscopic ellipsometry and independent of pore size and structure. We test four different types of EISA silica films; we refer to these films as the EISA silica films.

The thermal conductivities of the silica-based nanostructured films were measured with TDTR [12,13,32]. Details of our specific TDTR experimental setup are discussed elsewhere [27]. In short, an 80 MHz, 90 fs pulse train is split into a pump path and a probe path. The pump path is further modulated with an electro-optic modulator (EOM) and the probe path is temporally delayed with respect to the pump path via a mechanical delay stage. The pump and probe are focused down to the Al film through the glass substrate to 1/e² radii of ~17 μm. The reflectance of the probe pulses is collected with a silicon photodiode, and the thermoreflectance signal is monitored with a lock-in amplifier triggered at the EOM frequency.

Varying the pump modulation frequency can cause the TDTR signal to increase in sensitivity to various aspects of thermal transport [21,22,27,33]. In this work, we are interested in the thermal conductivity of the nanostructured silica films and therefore want to reduce the effects of radial spreading in the Al film while maximizing the sensitivity of the TDTR signal to cross plane transport. To determine the range of modulation frequencies that will cause the TDTR signal to be dominated by cross plane transport, we compare Eq. (19) to Eq. (20) [27]. Figure 3 shows the ratio of rri₁D to rriₐx (rri₁D = Re [θ₁D]/Im [θ₁D])] for the range of modulation frequencies typical in TDTR experiments. The calculations in Fig. 3 assume that w₁D = wₐm = 17 μm to simulate the experimental conditions. When rri₁D/rriₐx = 1, the heat transfer is purely one dimensional. For the sample geometry studied in this work (depicted in Fig. 1),
4 Results

In order to accurately determine the thermal conductivity of the silica structures (CD and EISA), we must first determine the thermal boundary conductance at the Al/glass interface and thermal conductivity of the glass. The importance of determining these thermal properties is illustrated by examining the thermal sensitivity over the pump-probe delay time defined as [16,34]

$$S_p = \frac{\partial \ln \left(\frac{X(t)}{Y(t)} \right)}{\partial \ln [p]}$$ (21)

where p is some thermophysical property and t is the pump-probe delay time. In this approach, central values of all the necessary thermophysical parameters are prescribed, and one particular property p is slightly perturbed while all other properties are kept constant. In our calculations, we perturb the thermophysical properties by 1%. In this case, we are interested in determining the thermal sensitivity to the thermal conductivity of the glass substrate ($p=K_0$), the thermal boundary conductance between the glass substrate and the Al film ($p=h_1$), the thermal boundary conductance between the Al film and some SiO2 film ($p=h_2$), and the thermal conductivity of some SiO2 film ($p=K_2$). For these calculations, we assume a pump modulation frequency of 11 MHz, $h_2=50$ MW m$^{-2}$ K$^{-1}$, and assume bulk values as our central values for all other thermophysical properties of the glass slide (assumed as bulk SiO2) and the Al film [28]. We examine three different cases for the thermal properties of the SiO2 film on side 2: (a) same properties as the glass slide, (b) same heat capacity as the glass slide with half of the thermal conductivity, and (c) thermal properties of air ($C_2=1000$ J m$^{-3}$ K$^{-1}$ and $K_2=0.0257$ W m$^{-1}$ K$^{-1}$). Note also that the sensitivity to h_1 is nearly as large as that of K_2 for cases (a) and (b), elucidating the importance of determining the thermal boundary conductance between the Al film and the glass slide. We assume bulk thermophysical properties for all other thermophysical parameters [28].

Fig. 4 Thermal sensitivity defined in Eq. (21) to the thermal conductivity of the glass substrate ($p=K_0$), the thermal boundary conductance between the glass substrate and the Al film ($p=h_1$), the thermal boundary conductance between the Al film and some SiO2 film ($p=h_2$), and the thermal conductivity of some SiO2 film ($p=K_2$) as a function of time for the measurement geometry shown in Fig. 1. We consider three different cases for the thermal properties of the film on side 2: (a) same properties as the glass slide, (b) same heat capacity as the glass slide with half of the thermal conductivity, and (c) thermal properties of air ($C_2=1000$ J m$^{-3}$ K$^{-1}$ and $K_2=0.0257$ W m$^{-1}$ K$^{-1}$). The thermal sensitivities to K_0, h_1, h_2, and K_2 for the three different cases are shown in Fig. 4. The thermal sensitivity to K_2 and h_2 decreases and the thermal sensitivity to the glass slide thermal properties (K_0 and h_1) increases as the thermal conductivity of material on side 2 decreases. This is intuitive as heat will more rapidly propagate into the glass as the thermal effusivity of the SiO2 film decreases. Also, for these cases, there is a relatively low sensitivity to h_1 since the conductance associated with the SiO2 film on side 2 is much lower than the Al/SiO2 film interface conductance [35]. In the limit that there is no SiO2 film and the Al film is adjacent to air on side 2, then the thermal...
Fig. 5 Representative TDTR data from the samples in this work along with their corresponding best fit thermal models. We probe the Al/cover glass and Al/glass slide samples that have not been coated with EISA or CD silica films from the front (not shown) and back to determine the thermal conductivity of the glass substrate and thermal boundary conductance at the Al/glass interface and verify our thermal model and fitting algorithm.

sensitivity to the air properties goes to zero and that to \(\kappa_0 \) and \(h_1 \) is maximized for this measurement geometry. Note also that the sensitivity to \(h_1 \) is nearly as large as that of \(k_2 \) for cases (a) and (b), elucidating the importance of determining the thermal boundary conductance between the Al film and the glass slide. Note that the sensitivity of \(h_1 \) will decrease as the thermal conductivity of \(\kappa_1 \) decreases as compared with \(\kappa_0 \) so that in the limit where \(\kappa_1 \) approaches that of air (much smaller than \(\kappa_2 \) in a given sample of interest), the sensitivity reduces to that of a more traditional TDTR measurement geometry.

During each Al evaporation run, we included an extra substrate that would not be used for silica film deposition and therefore be used for calibration in determining \(h_1 \) and \(\kappa_0 \). We deduce the thermal conductivity of the Al film from electrical conductivity measurements and the Weidemann–Franz law [36]; the thermal conductivity we determine—200 W m\(^{-1}\) K\(^{-1}\)—is slightly reduced from that of bulk—237 W m\(^{-1}\) K\(^{-1}\)—(Ref. [28])—although in practice the TDTR signal is relatively insensitive to the thermal conductivity of the Al film over the pump-probe delay time used to determine \(\kappa \) of adjacent materials. Figure 5 shows the TDTR data on the Al/cover glass and Al/glass slide. We probed both on the Al side (more traditional TDTR geometry by probing from the “front”) and through the glass (probing from the “back”) on the calibration samples. In the back probed sample (and for all the samples in which the TDTR measurements were taken through the glass shown in Fig. 5), slow oscillations occur throughout the first nanosecond; these oscillations are associated with Brillouin back-scattering and are similar to those observed by Schmidt et al. [20] in TDTR measurements using the same probing geometry. Probing from the front, we determine an average \(h \) and \(\kappa \) with standard deviation among the determined values of the cover glass as 80 \(\pm \) 10 MW m\(^{-2}\) K\(^{-1}\) and 1.25 \(\pm \) 0.08 W m\(^{-1}\) K\(^{-1}\), respectively. Our algorithm when probing from the back yields average best fits of 50 \(\pm \) 20 MW m\(^{-2}\) K\(^{-1}\) and 1.2 \(\pm \) 0.11 W m\(^{-1}\) K\(^{-1}\) in good agreement with the front data. For our thermal model on the EISA samples (which were deposited on the cover glass), we use the values determined from the front side probe, but the agreement with the glass side probe approach verifies our thermal model presented in Sec. 2. We perform the same analysis with the glass slides and determine a best fit \(h \) at the Al/glass slide interface and \(\kappa \) of the glass slide as 60 \(\pm \) 10 MW m\(^{-2}\) K\(^{-1}\) and 1.3 \(\pm \) 0.08 W m\(^{-1}\) K\(^{-1}\). In terms of the sample geometry shown in Fig. 1, these values represent \(\kappa_0 \) and \(h_1 \) in our thermal model, as previously mentioned.

Representative TDTR data on the CD and EISA films along with the TDTR data from the calibration samples (probing through the cover glass (EISA) and glass slide (CD)) are shown in Fig. 5 along with the best fit model. The average best fit \(\kappa \) and standard deviations on the CD and EISA films are 0.13 \(\pm \) 0.03 W m\(^{-1}\) K\(^{-1}\) and 0.35 \(\pm \) 0.1 W m\(^{-1}\) K\(^{-1}\), respectively. To minimize the fitting error, we adjust \(h_1 \) as this property can change based on interface structure and therefore probe location; the values we determine for \(h_1 \) are within 18% of those determined from our calibration sample. As previously mentioned, there is a relatively low sensitivity to \(h_2 \) since the conductance associated with the SiO\(_2\) film on side 2 is much lower than the Al/SiO\(_2\) film interface conductance [35]. Note in Fig. 5 that the thermoreflectance scans on the cover glass and glass slide with no porous SiO\(_2\) samples (i.e., the adiabatic case or the “air” case in Fig. 4) are different. Although the conductivities of the cover glass and glass slide were measured as slightly different in our calibration, this minute difference in \(x_0 \) is not the cause of this observed change in the thermoreflectance. The main difference between these scans arises due to the differing Al film thicknesses used in the CD and EISA samples as a thicker Al film gives a lower thermoreflectance response (\(-X/Y \)) in the temporal domain of interest. We find that the thermal conductivity of the EISA films is independent of the removal technique within the standard deviation among the measured values. The thermal conductivity of these porous silica films is in good agreement with that of SiO\(_2\)-based nanoporous films measured with the 3\(\omega \) technique [6].

Figure 6 compares the thermal conductivity measured in this work (EISA and CD) to the previous measurements of silica-based films—SiO\(_2\) sputtered thin film (sputtered), flowable oxide (FOx), and extra low-k (XLK) [6]—as a function of sample atomic density. The atomic density \(n \) of bulk SiO\(_2\) is 2.2 \(\times \) 10\(^{28}\) atoms m\(^{-3}\). We determine the EISA density as 70% of bulk SiO\(_2\) calculated from the porosity measurement discussed previously. We estimate the CD sample density as 2.8 \(\times \) 10\(^{27}\) atoms m\(^{-3}\) by comparing the TDTR signal magnitude to...
that of bulk SiO₂ [37]; this approach is valid since the silica particles comprising the CD film are upward of 1 μm and the reduction in atomic density in these films is due to the packing density of the particles. We also include data for bulk amorphous SiO₂ [38]. The EISA and CD thermal conductivities, along with the previous measurements, all show a substantial reduction in thermal conductivity from bulk and even thin film sputtered SiO₂. The reduction in conductivity as a function of atomic density for the SiO₂ film is compared with the differential-effective-medium (DEM) theory [39], which predicts that the reduced thermal conductivity is given by

\[\kappa = \kappa_{\text{solid}} \left(\frac{n}{n_{\text{solid}}} \right)^{3/2} \]

where the subscript “solid” refers to the corresponding property of bulk SiO₂. The predictions from Eq. (22) agree well with the CD samples measured in this work, yet overpredict the previously measured SiO₂-based films and the EISA film. This could arise due to the geometry of the pores in previously measured SiO₂-based films and the EISA film, as the DEM theory assumes an infinitesimal volume of spherical voids. However, the CD film is comprised of close-packed silica spheres, which could have a geometry more in line with the original assumptions of the DEM theory.

5 Conclusions

In this work, we solve the heat conduction equation in a multilayer stack of materials with a modulated source at any location in the multilayer stack based on the Feldman algorithm. This approach accounts for bidirectional heat transfer and accurately predicts the thermal processes in TDTR in the “probe from the back” geometry. We theoretically studied the dimensionality of the thermal transport in the frequency domain to determine modulation frequencies and thermal diffusivities where cross plane transport will dominate the heat transfer in a multilayer stack. We then applied our solution to TDTR data to determine the thermal conductivity of SiO₂-based films. One of the film types is nanoporosity (EISA) while the other type is comprised of close-packed spherical particles (CD). We compare the measured thermal conductivity to that of nanostructured silica films from the literature and to the DEM theory. The predictions from the DEM theory agree well with the CD samples measured in this work, yet overpredict the previously measured SiO₂-based films and the EISA films. This could arise since the CD film is comprised of close-packed silica spheres, which could have a geometry more in line with the original assumptions of the DEM theory.

Acknowledgment

P.E.H. and B.K. are greatly appreciative for funding from the LDRD Program Office through the Harry S. Truman Fellowship Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility; the authors would like to thank John Sullivan for assistance regarding work at the Center for Integrated Nanotechnologies. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

Nomenclature

- \(n \) = atomic density, m⁻³
- \(q \) = thermal wave vector, m⁻¹
- \(r_{\text{ri}} \) = ratio of real to imaginary solution
- \(S_p \) = thermal sensitivity to some parameter \(p \)
- \(T \) = temperature above ambient, K
- \(t \) = pump-probe delay time, s
- \(w \) = beam waist, m
- \(X \) = real component of lock-in response, V
- \(x \) = direction of thermal propagation, m
- \(Y \) = imaginary component of lock-in response, V

Greek Symbols

- \(\delta \) = thermal penetration depth, m
- \(\kappa \) = thermal conductivity, W m⁻¹ K⁻¹
- \(\theta \) = temperature rise, K
- \(\tau \) = time, s
- \(\omega \) = angular frequency, rad s⁻¹

Subscripts

- \(1D \) = one dimensional
- \(\text{Ax} \) = axially symmetric
- \(N \) = layer
- \(\text{pr} \) = probe
- \(\text{pm} \) = pump
- \(\text{solid} \) = solid matrix
- \(z \) = interface

Superscripts

- \(+ \) = for wave traveling in the +x direction
- \(− \) = for wave traveling in the −x direction

References

