Enhanced thermoelectric performance of Al-doped ZnO thin films on amorphous substrate

Shrirkant Saini, Paolo Mele, Hiroaki Honda, Dave J. Henry, Patrick E. Hopkins, Leopoldo Molina-Luna, Kaname Matsumoto, Koji Miyazaki, and Ataru Ichinose

1Institute for Sustainable Sciences and Development, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, Japan
2Graduate School for Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, Japan
3Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, U.S.A.
4Department of Materials and Geosciences, Technical University of Darmstadt, Darmstadt 64287, Germany
5Department of Mechanical Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
6Department of Materials Science, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
7CRIEPI, Electric Power Engineering Research Laboratory, Yokosuka, Kanagawa 240-0196, Japan
E-mail: ssaini@hiroshima-u.ac.jp; pmele@hiroshima-u.ac.jp

Received March 31, 2014; accepted April 21, 2014; published online May 19, 2014

2% Al-doped ZnO (AZO) thin films fabricated at 300 °C by pulsed laser deposition (PLD) on amorphous fused silica demonstrated the high quality crystallinity and grain connection, which correlates to the high thermoelectric performance: electrical conductivity $\sigma = 923 \, \text{S/cm}$ and Seebeck coefficient $S = -111 \, \mu \text{V/K}$ at 600 K. Its power factor $(S^2 \cdot \sigma)$ is $1.2 \times 10^{-3} \, \text{W m}^{-1} \text{K}^{-2}$, twofold better than films deposited on crystalline SrTiO$_3$ under the same experimental conditions. Using our measured thermal conductivity (κ) at 300 K (4.89 W m$^{-1}$ K$^{-1}$), the figure of merit, $ZT = (S^2 \cdot \sigma \cdot T / \kappa)$, is calculated as 0.045 at 600 K, 5 times larger than ZT of our previously reported bulk ZnO. © 2014 The Japan Society of Applied Physics

Since their discovery in 1822, thermoelectric materials have attracted significant attention for their ability to directly convert thermal energy to electrical energy without moving parts. The efficiency of thermoelectric energy conversion increases with the dimensionless figure of merit $ZT = S^2 \cdot \sigma \cdot T / \kappa$ (S: Seebeck coefficient; σ: electrical conductivity; κ: thermal conductivity; T: absolute temperature).

Seminal papers have predicted huge improvements in ZT through quantum confinement in Bi$_2$Te$_3$ superlattices. These papers have inspired a wealth of experimental work focused on the production of multiple quantum-well structures, such as multilayered and nanostructured thin films of alloys and intermetallic compounds. Various material systems such as Bi$_2$Te$_3$/Sb$_2$Te$_3$ multilayers, layered Zintl phases Yb$_{14}$MnSb$_{116}$, and AgPbSbTe nanostructured alloys, have shown remarkable performances, with ZT over 1.5. However, their practical applications remain limited because of low temperature decomposition, presence of rare and often poisonous elements, and high-cost processing.

Among sintered oxides, the best thermoelectric performance was obtained with dual Al and Ga doping of ZnO at the Zn site, with $ZT = 0.65$ at 1247 K. The main obstacle for increasing ZT at the same level of metallic materials has been found in the large values of κ (at room temperature typically 40 W m$^{-1}$ K$^{-1}$ for bulk ZnO vs 0.22 of the Bi$_2$Te$_3$/Sb$_2$Te$_3$ multilayers). For this reason, several groups have recently started to study the feasibility of nanoengineering control of thermoelectric properties in ZnO thin films and multilayers deposited on crystalline substrates by different techniques such as pulsed laser deposition (PLD), molecular beam epitaxy (MBE), and atomic layer deposition (ALD). In particular, we have recently reported for 2% Al-doped ZnO (AZO) thin films deposited on SrTiO$_3$ single crystals by PLD a large power factor $\sigma \cdot S^2 = 0.55 \times 10^{-3} \, \text{W m}^{-1} \text{K}^{-2}$ (600 K), which overcomes the performance of the corresponding previously reported bulk material and all the other films. In this letter, we extend our previous work, reporting for the first time the enhanced thermoelectric performance of AZO films deposited by PLD on inexpensive amorphous substrates (fused silica). The result is discussed considering the role of deposition temperature on the crystallinity of the films.

The 2% AZO thin films were grown by PLD technique using Nd:YAG laser (266 nm). Pellets of Zn$_{0.98}$Al$_{0.02}$O$_2$ (20 mm in diameter and 3 mm in thickness) prepared by spark plasma sintering were used as the target to grow the thin films. A detailed description of sintered target preparation is reported elsewhere. The laser was shot on the dense AZO target with a energy density of about 4.2 J/cm2 for a deposition period of 30 min. Thin films were deposited on fused silica substrates at 300, 400, 500, and 600 °C during the irradiation of the laser beam. The substrates were glued with silver paste on an Inconel plate customized for spark plasma sintering and heated up to 300 °C by a custom-built radiation ($\lambda = 1.5405 \, \text{A}$) and morphology was checked by transmission electron microscopy (TEM; JEOL 2010F). The thermal conductivity was measured from 300–600 K by a custom-built four-point-probe technique consisting of a current source (ADCMT 6144), a temperature controller (Cryo-con 32), and a nano voltmeter (Keithley 2182A). Seebeck coefficient was measured from 300–600 K with a commercially available system (MMR Technologies SB-100). Carrier concentrations and mobilities at room temperature were evaluated by means of Quantum Design PPMS. The thermal conductivities of thin films at room temperature were measured with time domain thermoreflectance (TDTR).
All the films deposited on fused silica have wurtzite hexagonal structure and are c-axis oriented since only (002) peak appears in XRD θ–2θ scan (Fig. 1). The c-axis length is about 5.19 Å, independent of deposition temperature, and slightly compressed with respect to bulk (5.20 Å). Off-axis scans (φ-scan) along the (002) axis of the thin films do not show any peaks which indicates that nanocrystalline grains are randomly distributed in plane, maintaining their c-axis perpendicular to the substrate surface. According to SEM analysis of the film surfaces (not reported here), the grain size increases with deposition temperature, as reported in Table I.

Transport and thermoelectric properties of AZO thin films are summarized in Table I and Fig. 2. Figure 2(a) shows the electrical conductivity vs temperature for AZO thin films deposited at various substrate temperatures (300, 400, 500, and 600 °C). All the films show typical semiconducting behavior. The increasing deposition temperature leads to a decrease of electrical conductivity. At 600 K, the film deposited at 300 °C shows the highest electrical conductivity (923 S/cm, threefold greater than values reported on single crystals12) while the film deposited at 600 °C shows the lowest electrical conductivity, 27 S/cm at room temperature, even lower than our previously reported bulk material (152 S/cm).16 The values of carrier concentrations and mobilities, determined by Hall measurements, are reported in Table I. Similarly as in the samples deposited on crystalline substrates,17 it is not possible to find a clear correlation between the carrier concentration, the mobility and the electrical conductivity. Figure 2(b) shows the Seebeck coefficient of the thin films over the temperature range from 300 to 600 K. The films show a negative Seebeck coefficient, which indicates n-type conduction due to Al3+ doping and oxygen vacancies. The absolute value of the Seebeck coefficient increases with deposition temperature and operating temperature as well. The highest value of the Seebeck coefficient at 600 K is $-236 \, \mu \text{V/K}$ for thin films deposited at 600 °C and the lowest $-114 \, \mu \text{V/K}$ for thin films deposited at 300 °C, which is opposite behavior with respect to electrical con-

| T_{dep} (°C) | Grain size (nm) | Electrical conductivity σ (S/cm) | Carrier concentration n $(10^{19} \, \text{cm}^{-3})$ | Mobility μ $(\text{cm}^2 \, \text{V}^{-1} \, \text{s}^{-1})$ | Seebeck coefficient S $(\mu \text{V/K})$ | Power factor PF $(10^{-3} \, \text{Wm}^{-1} \, \text{K}^{-2})$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>60</td>
<td>601/923</td>
<td>0.23</td>
<td>950</td>
<td>$-62/-114$</td>
<td>0.23/1.2</td>
</tr>
<tr>
<td>400</td>
<td>90</td>
<td>74/93</td>
<td>0.22</td>
<td>206</td>
<td>$-119/-203$</td>
<td>0.11/0.37</td>
</tr>
<tr>
<td>500</td>
<td>90</td>
<td>38/54</td>
<td>1.70</td>
<td>13</td>
<td>$-141/-236$</td>
<td>0.08/0.30</td>
</tr>
<tr>
<td>600</td>
<td>120</td>
<td>20/27</td>
<td>0.01</td>
<td>1730</td>
<td>$-139/-220$</td>
<td>0.04/0.13</td>
</tr>
<tr>
<td>Bulk AZO</td>
<td></td>
<td>206/152</td>
<td></td>
<td></td>
<td>$-132/-150$</td>
<td>0.35/0.34</td>
</tr>
</tbody>
</table>

Fig. 1. (Color online) XRD patterns of AZO films deposited at different temperatures ($T_{\text{dep}} = 300$, 400, 500, and 600 °C).

Fig. 2. (Color online) (a) Electrical conductivity vs temperature (σ–T) characteristics, (b) Seebeck coefficient vs temperature (S–T) characteristics, (c) power factor vs temperature (PF–T) characteristics of AZO thin films deposited at different temperature ($T_{\text{dep}} = 300$, 400, 500, and 600 °C).

Table I. Electrical and thermal parameters for thin films and bulk pellet of AZO at 300 K/600 K.

a) Refs. 17 and 25.
ductivity. The Seebeck coefficients of AZO/silica films present similar values and dependence with deposition temperature as AZO/SrTiO3 films.12 From the values of Seebeck coefficient and electrical conductivity, we have calculated the efficiency of thermoelectric material by the value of power factor (PF) of thin films as $PF = S^2 \cdot \sigma$ [Fig. 2(c)]. The value of power factor decreases with deposition temperature and increases with operating temperature. Thin films deposited at 300°C demonstrate the highest value of power factor: 0.23×10^{-3} W m$^{-1}$ K$^{-2}$ at 300 K and 1.2×10^{-3} W m$^{-1}$ K$^{-2}$ at 600 K. Due to the high electrical conductivity value, the thermoelectric performance of thin films deposited at 300°C is enhanced in comparison with previous reports for thin films (0.55×10^{-3} W m$^{-1}$ K$^{-2}$ at 600 K on SrTiO3$^{12})$.

The remarkable difference between the performances of best (deposited at 300°C) and worst (deposited at 600°C) AZO/silica samples can be explained comparing the morphology and orientations of the grains. Cross-sectional TEM observation [Figs. 3(a) and 4(a)] clearly show the same morphology for both films: columnar grains grow on a thin seed layer constituted by smaller grains, similarly as observed earlier by other groups13,21 for AZO films grown on glass. According to energy-dispersive X-ray spectroscopy (EDS) analysis, the smaller grains are constituted by Al, Zn, and O. We can exclude any interfacial reactions between AZO and silica. Interestingly, on single crystalline substrates the seed layer was never observed and the columnar grains grow directly on the substrate. Closer inspection [Figs. 3(b) and 4(b)] reveals that the grains width are 20–50 nm for both films, though the thickness of the seed layer, about 60 nm for the sample deposited at 300°C, doubles at 600°C. Electron diffraction shows rings shaped patterns [Figs. 3(c) and 4(c)], which the signature of randomly oriented grains. The length of the columnar grain layer is about 500 nm for the film deposited at 300°C and 600 nm for the other films. Widths are about 60 nm for the film deposited at 300°C and 120 nm for the other film, consistent with the observation from the SEM (Table I). The columnar grains of the first sample are well connected and grain boundaries are sharp [Figs. 3(a) and 3(d)], while the second sample presents several pores at the grain boundaries [Figs. 4(a) and 4(d)]. Consequently, electron scattering is expected to be larger in the second samples, and this qualitatively explains the differences in electrical conductivity. Furthermore, both films show two hexagonal electron diffraction patterns [Figs. 3(e) and 4(e)] tilted from the ideal orientation (perpendicular to the surface of the substrate), however tilt is much more evident in the film deposited at 600°C. This is another proof of the superior crystallinity of the sample deposited at 300°C. TEM and electron diffraction patterns are not available for the samples deposited at 400 and
500 °C. However, considering the trend of grain size (Table 1) and XRD patterns (Fig. 1) it seems reasonable to explain their intermediate thermoelectric performances with intermediate crystallinity and grain connection. The improved performance of the AZO/silica film in comparison with films deposited on single crystals under the same experimental conditions may be explained by invoking lower density of dislocations, according with the study done by Novotny et al. The reasons for the limited amount of dislocations are the lowest stress of thin films deposited on fused silica (0.9 GPa) and lower electron density in interatomic regions. Being that silica is amorphous, it is not possible to calculate the linear density of dislocations for a comparison with the films grown on single crystals. Direct observation of strain at the nanoscale by advanced methods like Geometrical Phase Analysis are planned to validate the observation of strain at the nanoscale by advanced methods like Geometrical Phase Analysis (23) are planned to validate the dislocation argument.

The thermal conductivity (κ) for AZO thin film deposited at 400 °C is 4.89 ± 0.81 W m⁻¹ K⁻¹ at 300 K, one order of magnitude lower than for our previously reported bulk AZO at room temperature (16) and consistent with values reported by other groups (19). The dimensionless figure of merit ZT is calculated as about 0.0067. The behavior of ZT values for thin films at elevated temperatures may be estimated using κ at 300 K (κ₃₀₀Κ) as the thermal conductivity; since the thermal conductivity of crystals decreases with increasing temperature due to increased phonon-phonon scattering, we assert this as a conservative approximation. Figure 5 shows that ZT of the AZO films is always higher than for our previously reported bulk of the same composition (16) for all temperatures in the range considered in this study. For instance, ZT at 600 K is 0.045, with an enhancement of about five times with respect to our previously reported bulk. This result is quite encouraging for the practical applications of thermoelectric oxide thin films.

In summary, the thermoelectric material AZO was grown as thin film by pulsed laser deposition technique at various deposition temperatures (T_{dep} = 300, 400, 500, and 600 °C) on cheap amorphous fused silica substrates. All thin films are crystalline with preferential c-axis orientation. Over the temperature range from 300–600 K, the thin film deposited at 300 °C clearly shows the best thermoelectric performance: σ = 932 S cm⁻¹, S = −144 µV K⁻¹, and PF (σS²) = 1.2 x 10⁻¹² W m⁻¹ K⁻¹ at 600 K, better than AZO films deposited on single crystals. This result is due to two facts: excellent grain connectivity and superior crystallinity of the sample deposited at 300 °C. Thermal conductivity is 4.89 ± 0.81 W m⁻¹ K⁻¹ at room temperature. From this, we conservatively estimate the thermoelectric figure of merit of our AZO thin films as ZT = 0.045 at 600 K, fivefold better than our previously reported bulk material of same composition. Since silica is much cheaper than single crystalline substrates, this result is quite encouraging for the practical applications of thermoelectric oxide thin films.

Acknowledgments We thank Dr. J. F. Ihlefeld of Sandia National Laboratories for insightful discussions. D.J.H. and P.E.H. are appreciate funding from the United States National Science Foundation, Grant No. CBET-1339436 and the Commonwealth Research Commercialization Fund (CRCF) of Virginia.

References

25) For bulk AZO, the value of σ, and power factor at 300 K are taken by extrapolation of σ and σ from Ref. 17.